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Abstract:We design an interactive stack in the setting of stream processing functions. The design passes
through a series of abstraction levels relating different views of the stack component. The external view
describes the component’s input/output behaviour, the transition view captures the stepwise transitions,
and the state-based view discloses the internal structure. The different descriptions can systematically
be derived from the input/output behaviour following sound transformation rules. The case study
exemplifies general methods for the specification and refinement of interactive components.
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1 Introduction

The description of classical data structures like lists,
trees and arrays was originally based on their storage
representations. Lateron the theory of abstract data
types allowed the representation independent speci-
fication of data strutures based on the characteristic
properties of their operations. The algebraic approach
also influenced object-oriented software technology by
providing succinct notions for interface and encapsu-
lation.

Many components in distributed systems encapsu-
late some abstract data type. Here the static data struc-
ture is generalized to an interactive component which
communicates with its environment. The communi-
cation histories are modelled by streams, that are se-
quences of messages. Streams abstract from a notion
of time and record only the flow of messages on the
channels of the distributed system. The input/output
behaviour of an interactive component is described by
a stream processing function [7, 8] mapping input his-
tories to output histories.

In this paper, we systematically design an interac-
tive stack in the setting of stream processing functions.
An interactive stack is a communicating component
that stores and returns data upon request following a

last-in first-out strategy. The design passes through a
series of abstraction levels relating different views of
interactive stacks. In the external view, the stack com-
ponent is considered as a black box without referring
to its internal structure. The stack interacts with the
environment by receiving input commands and send-
ing output messages. The interaction with the environ-
ment defines a function between input and output his-
tories. The transition view describes the reaction of the
interactive stack on a single input command after hav-
ing processed a previous input history. The transition
view models the causal relationship between single in-
put commands and the corresponding segments of the
output history. The internal view discloses the control
structure and the state of a component; it prepares the
implementation by a state transition system.

The more refined descriptions of the interactive
stack component can systematically be derived from
the input/output behaviour within a uniform frame-
work. The refinement steps can be formalized by trans-
formation rules [6] which expose the design decisions
underlying the component’s implementation.

Section 2 surveys the basic notions about commu-
nication streams. In Section 3 , we define the interface
of the interactive stack preparing the external view.
Hereby we carefully discriminate between regular and



erroneous input histories. In Section 4 , we validate
the specification by examining characteristic proper-
ties. In Section 5 , we derive the transition behaviour
from the external behaviour. The state-based descrip-
tion in Section 6 discloses the component’s internal
structure; it describes the effect of an input command
by an update of the local state. In Section 7 , we pe-
sent an implementation by a state transition machine
introducing a control state for handling erroneous sit-
uations. Section 8 shows an equivalent description by
an infinite state transition system. The conclusion re-
visits the approach and outlines further design steps.

2 Streams and Stream Processing
Functions

In this section, we survey the basic notions about
streams and stream processing functions [10] to ren-
der the paper self-contained.

2.1 Streams

Streams model the temporal succession of messages
on the unidirectional channels of a network. Given an
alphabetA , the equation

A? = {〈〉} ∪ A ×A? (1)

defines the setA? of finite streams X =
〈x1, x2, . . . , xn〉 of length ||X|| = n ≥ 0 with ele-
mentsxi ∈ A (i ∈ [1, n]) . Throughout the paper,
streams are denoted by capital letters, their elements
by small letters.

Finite streams are generated from theempty stream
〈〉 by repeatedly attaching an element to the front of the
stream:〈x1, x2, . . . , xn〉 = x1 / x2 · · · / xn / 〈〉 . The
concatenationof two streamsX = 〈x1, x2, . . . , xm〉
andY = 〈y1, y2, . . . , yn〉 yields the streamX&Y =
〈x1, x2, . . . , xm, y1, y2, . . . , yn〉 . Appending an ele-
ment to the rear of a stream is denoted byX . x =
X&〈x〉 .

The number of occurrences of elements of a setB
in a streamX is denoted by||X||B .

The setA? of finite streams overA forms apar-
tial order under theprefix relation. Here a streamX
approximatesa streamY , denoted byX v Y , iff
X&R = Y holds for some streamR ∈ A? . The pre-
fix relation models operational progress in time: the
shorter stream forms an initial part of the communi-
cation history. The empty stream is the least element
which can be extended to every history.

A function f : A → B on elements is extended
to a functionf? : A? → B? on streams by setting
f?(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉 . Moreover,
all functionsf : A → B are naturally extended to
(equally denoted) functions on subsetsM ⊆ A by set-
ting f(M) = {f(a) | a ∈M} .

2.2 Stream Processing Functions

A stream processing function, for short astream trans-
formerf : A? → B? maps an input stream to an out-
put stream. It models adeterministic componentwith
one input and one output channel; we will not enter
the area of nondeterminism here. The typesA andB
determine thesyntactic interfaceof the component.

In the sequel, we concentrate on monotonic func-
tions where further input leads to further output. A
stream transformerf : A? → B? is called (prefix)
monotonic, if X v Y implies f(X) v f(Y ) for all
X,Y ∈ A? . Due to a standard theorem, any mono-
tonic function on finite streams has a unique continu-
ous extension to infinite streams [9] .

3 Specification

An interactive stackis a communicating component
with one input and one output channel. The compo-
nent can store an unbounded number of data elements.
The input consists of push commands entering a da-
tum, and pop commands requesting the datum stored
most recently. When time progresses, the interactive
stack consumes an input stream of commands and pro-
duces an output stream of data, compare Fig. 1 .
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Figure 1: External view of an interactive stack of nat-
ural numbers



3.1 Interface

First we concentrate on thesyntactic interfaceof the
component and define the types of messages on the in-
put and the output channel. The typeD 6= ∅ of data to
be stored in the interactive stack need not to be speci-
fied further.

The component receives as input either a push com-
mand together with the datum to be stored or a pop
command requesting the datum stored most recently.
Hence we define the typeI of input messages as

I = {pop} ∪ push(D) (2)

The typeO of output messages simply isD.

3.2 Specifying the Input/Output Behaviour

Then we specify thebehaviourof the interactive stack
by a stream processing function

stack : I? → O?

mapping input histories to output histories. The in-
put/output behaviour describes an external or black-
box view of the stack component not revealing its in-
ternal structure.

3.3 Domain of the History Function

In general, a component is not designed for an arbi-
trary environment; so it will react regularly only on a
subset of all possible input histories. We document the
assumptions on the environment and define the set of
regular input histories.

When an interactive stack receives a pop command,
it outputs the datum which has been stored most re-
cently and has not yet been output. Therefore an empty
stack cannot respond regularly to a pop command.

Thus we partition the setI? of all input histories
into the disjoint setsR of regular andE of erroneous
input histories:

I? = R ∪̇ E (3)

An input stream represents aregular input historyiff
for each prefix the number of pop commands does not
exceed the number of push commands:

X ∈ R iff ∀Y vX : ||Y ||{pop} ≤ ||Y ||push(D) (4)

The sets of regular and erroneous input histories show
characteristic closure properties. For example, initial
segments of regular input histories are regular as well:

X&Y ∈ R ⇒ X ∈ R (5)

Complementary, prolongations of erroneous input his-
tories are erroneous as well:

X ∈ E ⇒ X&Y ∈ E (6)

For the setR of regular input histories, we make use
of an equivalent inductive definition to ease function
definitions by pattern matching:

(1) push(D)? ⊆ R
(2) If P ∈ push(D)? andP&X ∈ R ,

thenP&〈push(d), pop〉&X ∈ R .

3.4 Regular Behaviour

The input/output behaviour of the stack relates the in-
put and output histories passing through the compo-
nent’s interface.

The regular behaviourstack : R → O?, viz.
the behaviour on the subset of regular input histo-
ries, is defined with the above recursion scheme(P ∈
push(D)?) :

stack(P ) = 〈〉 (7)

stack(P&〈push(d), pop〉&X) = d / stack(P&X) (8)

A sequence of push command generates no output (7) .
A pop command outputs the most recent datum which
has not yet been requested (8) .

The regular behaviour is well-defined, since the re-
cursive equation (8) decreases the number of pop com-
mands in each step which eventually leads to equation
(7) .

3.5 Irregular Behaviour

In a loose approach to system modelling, the reaction
of an interactive stack upon receiving erroneous input
need not be specified. With such anunderspecification
the designer expresses the willingness to accept every
behaviour on irregular input.

In subsequent refinement steps, the underspecifica-
tion can be resolved by adding further design deci-
sions. As an important constraint, we must take into
account the monotonicity of the stream transformer.

3.5.1 Fault Tolerant Behaviour

A fault tolerant stack ignores an illegal pop command
from the environment and continues to perform its ser-
vice on future input commands. The fault tolerant be-
haviour is specified by adding the equation

stack(pop / X) = stack(X) . (9)



As a consequence, an initial sequences of pop com-
mands will not influence the input/output behaviour.

3.5.2 Fault Sensitive Behaviour

When receiving an unexpected pop command from the
environment, the interactive stack may break and not
provide any output whatever further input commands
arrive:

stack(pop / X) = 〈〉 . (10)

The output stems from the longest regular prefix of the
irregular input history.

For the remainder of this paper, we will further elab-
orate the fault sensitive behaviour.

4 Validation

The validation of a component’s specification provides
valuable feedback whether the specified behaviour
meets the informal requirements.

In this section we validate the specification of the
interactive stack in two respects. First we check the
soundness of the stream transformer wrt. formal crite-
ria. Then we explore the behaviour of the interactive
stack for special input and output histories.

4.1 Monotonicity

The stack component is described by a monotonic
stream transformer:

stack(X) v stack(X&Y ) (11)

The length of the output stream is limited by the num-
ber of pop commands:

|| stack(X) || = ||X||{pop} if X ∈ R (12)

|| stack(X) || < ||X||{pop} if X ∈ E (13)

4.2 Decomposition Properties

The output of the interactive stack for a composite in-
put stream can be inferred from the output histories of
the substreams:

stack(X&Y ) = stack(X) & stack(red(X)&Y ) (14)

The auxiliary functionred : I? → I? reduces an input
stream by removing all executable commands(P ∈

push(D)?) :

red(P ) = P (15)

red(D&〈push(d), pop〉&X) = red(P&X) (16)

red(pop / X) = pop / X (17)

The auxiliary functions abstracts from the initial sub-
stream the information needed for processing the final
substream. If the initial substreamX is erroneous, the
final substreamY must not provides an output.

4.3 Inversion

The behaviour of the interactive stack is a function as-
sociating an output stream with every input stream.
The inverse functionstack−1 : O? → P(I?) deter-
mines the set of all input histories generating a given
output stream.

A regular input history causes the empty output iff
it contains no requests:

stack−1(〈〉) ∩R = push(D)? (18)

An erroneous input history generates the empty output
iff it starts with a pop command:

stack−1(〈〉) ∩ E = {pop} / I? (19)

Altogether the validation increases the confidence in
the specified behaviour of the interactive stack which
serves as starting point for the subsequent refinement.

5 Transition Behaviour

The external behaviour is based on a summary descrip-
tion that refers to entire communication histories; it ab-
stracts from the transitions effected by the single com-
mands of the input stream.

In this section, we model the component in greater
detail when processing the input stream element by
element. This description reveals basic operational
traits, since it records which segment of the output his-
tory is caused by which command from the input his-
tory.

Thetransition behaviourof the interactive stack

trans : I? → [I → O?]

yields that segment of the output stream caused by a
single input command after having processed a previ-
ous input history:

stack(X . x) = stack(X) & trans(X)(x) (20)



The transition behaviour reflects the causality of a
component. The implicit specification (20) makes only
sense for monotonic stream transformers where a pro-
longation of the input history effects a prolongation of
the output history as well.

We derive an explicit definition by fold and un-
fold transformations along with algebraic simplifica-
tions (P ∈ push?(D)):

trans(X)(push(d)) = 〈〉 (21)

trans(X)(pop) = trans(red(X))(pop) (22)

trans(〈〉)(pop) = 〈〉 (23)

trans(pop / X)(pop) = 〈〉 (24)

trans(P . push(d))(pop) = 〈d〉 (25)

A push command causes no output after any input his-
tory (21) . The effect of a pop command depends on
the input history (22) . If the reduced input history is
empty or erroneous, a pop command effects no output
(23, 24) . If the reduced input history is regular and
nonempty, the pop command outputs the most recent
datum that has not yet been requested (25) .

6 State-Transition Behaviour

The input/output behaviour of the interactive stack was
specified without referring to the internal structure of
the component. A refined view discloses the internal
or local state of the component and describes the ef-
fect of an input command by an update of the internal
state. With the disclosure of the internal state space,
we arrive at aglass-box viewof the stack component.

The state of a component abstracts from the input
history the information that determines the compo-
nent’s behaviour on future input. We record the data
that have not yet been requested as the internal state
and choose the data typeD? as state space. The state
transition behaviour

stb : D? → [I? → O?]

of the interactive stack with an internal state agrees
with the external behaviour where the input stream is
prefixed with the push commands generating the inter-
nal stack:

stb(D)(X) = stack(push?(D)&X) (26)

A direct recursive version of the higher order stream
transformerstb can easily be derived from this speci-

fication:

stb(D)(〈〉) = 〈〉 (27)

stb(D)(push(d) / X) = stb(D . d)(X) (28)

stb(〈〉)(pop / X) = 〈〉 (29)

stb(D . d)(pop / X) = d / stb(D)(X) (30)

A datum from the input is pushed onto the internal
stack without generating output (28) . The attempt
to pop an empty stack results in an error. (29) . A
pop command to a nonempty stack outputs the datum
stored most recently (30) .

An observer can query the internal state of the in-
teractive stack by inputting a sufficient number of pop
commands until he gets no more response. So the in-
ternal state is transparent to the environment.

7 State Transition Machine

The state transition behaviour of the stack can equiv-
alently be described as a state transition machine with
input and output [5] . In the seuqel, we settle the com-
ponents of the machine and implement the interactive
stack.

A state transition machine with input and output

M = (S, I,O, δ, ϕ)

consists of a setS of states, an input alphabetI , an
output alphabetO , aone-step state transition function
δ : S × I → S and aone-step output functionϕ :
S × I → O? .

The multi-step output functionϕ? : S → [I? →
O?] of the state transition machineM with

ϕ?(q)(〈〉) = 〈〉 (31)

ϕ?(q)(x / X) = ϕ(q, x) &ϕ?(δ(q, x))(X) (32)

forms a prefix monotonic stream transformer.
For the interactive stack, the set of states

S = {fail} ∪ D? (33)

combines the control statefail recording an illegal pop
command with the data space holding the stored ele-
ments. The input setI = {pop} ∪ push(D) and the
output setO = D are obvious.

The control state indicates an illegal pop command
in the previous history. The introduction of a con-
trol state supports transforming the equations (27)–



(29) into the regular form used in a state transition ma-
chine:

δ(fail , x) = fail (34)

δ(D, push(d)) = D . d (35)

δ(〈〉, pop) = fail (36)

δ(D . d, pop) = D (37)

The output function is given by

ϕ(fail)(x) = 〈〉 (38)

ϕ(D, push(d)) = 〈〉 (39)

ϕ(D . d, pop) = 〈d〉 (40)

ϕ(〈〉, pop) = 〈〉 . (41)

The correctness of the implementation

ϕ? = stb (42)

follows from the fact that the multi-step output func-
tion coincides with the external behaviour of the inter-
active stack.

Note that classical Mealy machines are restricted to
a finite input and a finite state space. Moreover, they
provide exactly one output for each input.

8 State Transition Diagram

A state transition machine with input and output may
be visualized by astate transition diagramhaving the
set of states as vertices. Each directed edge from one
state to a successor state is labelled by a corresponding
pair naming input and output.

For the interactive stack, we obtain a state transition
diagram with the set of nodes{fail} ∪ D? and four
types of arcs:

{fail
(x,〈〉)−−−−→ fail | x ∈ I} ∪

{D (push(d),〈〉)−−−−−−→ D . d | D ∈ D?} ∪

{D . d
(pop,〈d〉)−−−−→ D | D . d ∈ D?} ∪

{〈〉 (pop,〈〉)−−−−→ fail}

The state transition diagram of the interactive stack is
infinite, but quite regular. Fig. 2 shows an initial part
the state transition diagram for a binary data typeD =
{0, 1} .
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Figure 2: Initial part of the infinite state transition dia-
gram of an interactive stack of binary values

9 Conclusion and Related work

For getting an insight into the advantages and short-
comings of design techniques for the components of
distributed systems, it is necessary to apply the ap-
proaches to case studies.

The stream-based approach was successfully
worked out for various case studies, among others a
merge component [4] , a buffer of length one [2] and
different memory, transmission and control compo-
nents [3] . In [1] several versions of an interactive
queue are modelled which differ in the reaction to
unexpected or erroneous input.

Many design studies concentrate on a single view
of the communicating component — usually the state-
oriented glass-box view. In the software development,
however, we need various points of view to bridge the
levels of abstraction between a problem-oriented spec-
ification and the final implementation.

In this paper we demonstrated that the stream-based
approach offers a sound framework for uniformly de-
scribing the behaviour of an interactive stack on dif-
ferent levels of abstraction. The refined views can sys-
tematically be derived from the external behaviour fol-
lowing sound transformation rules.

The state-based description from the previous sec-
tions is not the final version of the design. Further
design steps will refine the output interface by intro-
ducing an acknowledge channel. Also the input in-
terface can be refined separating pop and push com-



mands. An essential design step then consists in intro-
ducing a timing behaviour for the component. In the
framework of timed streams, the input and correspond-
ing output events are related in a discrete time frame.
A quite different development line concerns the tran-
sition to an interactive stack of bounded size. After
this design step, the internal state can be further refined
by introducing a memory management on an array of
fixed length.
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