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Abstract: Modeling of large systems requires high level of expertise to properly identify and represent 
complex interrelationships between various elements. In addition to creation of a network of system’s 
elements and their relationships, very important contribution to understanding of its behavior we can get from 
human experts. Naturally, humans express their experience and beliefs descriptively, emphasizing causal 
relationship between elements, and also descriptively (linguistically) evaluating their parameters’ values 
instead of precisely doing it. Upon this basis we can use a graphical approach to model a system and capture 
related knowledge. Such approach picture cause and effect relations creating system’s (fuzzy) cognitive map 
(F)CM. In this paper we present a part of results gathered during research work on fuzzy cognitive maps 
application in the machining process planning decision analysis. We apply negative-positive-neutral logic 
based approach to analyze a real industrial problem, namely, what-if problem of low surface quality. Finally 
we have pointed out the main directions of further research.  
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1 Introduction 
 
The main idea behind attempts to cope appropriately 
with complex problems is to describe relationships 
between various elements (concepts) of a system 
and thus provide knowledge representation and 
inference. Such description of a problem should 
utilize experts' beliefs and cognition about a 
problem, yielding thorough analysis, reliable 
forecasting and decision-making. The methodology 
proposed in the paper aims to contribute the 
overcoming of  shortcomings of traditional 
knowledge-based systems that lead to expert system 
failure related to, for instance, incomplete, 
inconsistent, and ambiguous knowledge bases. 
Another shortcoming that troubles conventional 
approaches to complex systems modeling is related 
to type of relationships between system variables. 
These appear quite often to be rather causal than 
explicit IF-THEN rules. Depending on a system we 
are modeling, its dynamics can additionally bring 
difficulties in knowledge base development. 
 Machining process planning is an 
engineering activity which deals with problems 
related to (optimal) selection of operations, 
machinery, tooling, machining parameters, etc., 
required for production of a given part. Optimality 
of generated solution depends significantly upon 
expert-in-the-field experience, beliefs, and 
knowledge on (machining) system behavior. Such 

real world (industrial) situation addresses two 
important issues. On one side, in the machining 
domain we can find causal dependencies between 
system variables. For instance, cutting speed should 
be decreased when machining materials of high 
hardness, but we can use higher speeds when 
workpiece material hardness is not so high. 
Furthermore, it is not recommended to use high feed 
rates if we use high speeds. Also, we can expect 
higher wear rate at higher machining speeds. These 
are only a few causal relationships we can draw 
between machining system variables. On the other 
side, different experts provide different views of the 
same problem and thus different solutions, which in 
turn may perform different output (overall) effects. 
In addition, each solution possibly encodes expert’s 
knowledge weakness, as well, expressed through 
oversight, ignorance and prejudice. But this is just 
another fact that reflects real situations when 
making decisions during, for instance, planning of 
machining operations. In order to obtain an optimal 
solution refined from mentioned weaknesses we are 
apt to discuss a problem with other experts trying to 
reach a consensus. Modeling taxonomy based on 
graphical representation of causal relations of a 
problem, namely fuzzy cognitive maps (FCM) [6], 
allows for modeling of each possible view of a 
problem and then generate global solution by 
augmenting a set of separate FCMs [6-8], [10-12].  



Providing a description of complex system 
behavior, based on very valuable and important 
experts’ experience and learned knowledge, FCMs 
enable thorough analysis and come up with an 
answer to what-if question. An if input vector of 
data is composed from lower level decision support 
system’s (DSS) outputs. What happens when an 
input vector affect a system, we can find as an FCM 
output, suggesting possible actions that bring 
equilibrium or stable state to a system. That is, FCM 
is qualitative tool, which cannot present exact 
mathematical answer but rather to point out the 
gross behavior of a system, to show the global 
patterns of how the whole of our (experts) beliefs 
behaves [1], [6-8], [10-13], [15-16]. 

The aim of the approach is to promote the 
methodology for multicriteria decision analysis and 
reasoning about potential effects of initially 
generated process plans and related parameters. 
Traditional computer aided process planning 
(CAPP) DSS structure lacks at least three important 
features: (1) uncertainties handling and 
corresponding approximate reasoning abilities, (2) 
learning capabilities, and (3) decision analysis [2], 
[9], [14]. Last decade brought significant progress 
and improvements related to the first two “missing” 
features [2], [9], [14], [3-4]. However, no significant 
results were reported so far upon the third feature. 
Real industrial practice shows that initially 
generated process plans and/or process parameters 
usually require adaptation, adjustment and tuning, 
which refers to decision analysis and adaptation 
reasoning. Therefore, such a special module should 
upgrade CAPP DSS structure to support (post-
processing) adaptation decision making. 
 The paper is organized as follows. Next 
section briefly reviews theoretical background of 
FCMs. The third section describes process planning 
decision analysis by FCM. Illustrative example 
report preliminary research results of FCMs 
applications in the field of machining process 
planning and analysis. The research has been 
conducted in both laboratory and industrial 
environment. 
 
 
2 Theoretical Background 
 
FCMs are signed, fuzzy weighted and directed 
graphs with feedback. The concept nodes Ci are 
fuzzy sets or even fuzzy systems. That is, nodes of 
FCM can be viewed as distributed (fuzzy) expert 
systems. The links, or so-called edges, define rules 
or causal flows between the concept nodes. The 
modeling framework is based on determination of 
meaningful concepts, connecting them to form a 
network, and evaluating the direction of effect of 

target concept excited by cause concept. The 
directed link (edge) wij, from causal concept Ci to 
target (effect) concept Cj, measures how much Ci 
causes Cj. Connection n-by-n matrix W contains 
weights of all edges representing weighted causation 
rules of system behavior. The edges wij take values 
in the fuzzy causal interval [-1, +1]. The edge 
weights wij are constant and only the node values 
change in time.  
 Weighted causation linkage describes 
system behavior, but positive or negative logic 
values interval [0,1], i.e.  [-1, 0] constrains a portion 
of important information about a system. Almost 
every decision has its consequences, presenting very 
valuable portion of information upon which we also 
make our decisions. Since FCM modeling 
framework involves negative edge weights as well, 
i.e. edge weights in trivalent {-1, 0, +1} or 
multivalent [-1,+1] interval, we need adequate 
logical and relational system to support reasoning 
with such values. The extensions of classic crisp 
logic, fuzzy logic, crisp relations and fuzzy relations 
were proposed by the end of 80’s through, so called, 
NPN logic and NPN relations [15]; NPN stands for 
“Negative-Positive-Neutral”. We will briefly give 
the basics of NPN theory in the sequel, and direct 
interested readers to [15-16]. 

NPN logic variable (both crisp and fuzzy) 
may take value in a [-1,+1]. In addition to three 
individual values from [-1,0), {0}, (0,+1], NPN 
logic variable may have three compound values as 
well. Compound values and corresponding 
mathematical apparatus provide possibility to count, 
so-called, side effect of each decision making path. 
Side effect measures under what mutual conditions 
between concepts FCM settles down in equilibrium. 
These compound values are summarized as follows: 
 

i) (0, 0) − indicates neutral relationship 
between concepts i and j, i.e., 
there is no induced effect 
between objects i and j if 
object i is strengthen (excited); 

ii) (0, P) − Indicates there is no induced 
negative relationship; positive 
relationship has a strength P; 

iii) (N, 0) − indicates there is no induced 
positive relationship; negative 
relationship has a strength N; 

iv) (N, P) − indicates that object i has both 
positive and negative 
relationships to object j; 
negative relationship has a 
strength N, and positive 
relationship has a strength P. 

 



 The fourth case of value pair (a, b) is the 
most informational and fully describes the side 
effect. Namely, if lower bound value a = N is 
dominant over upper bound value b = P, i.e., |N| > 
|P|, when FCM comes to equilibrium, that will cause 
negative effect from i-th object to j-th object but 
also will oppositely produce positive effect to some 
extend. That means, equilibrium in the system can 
be reached only if object i negatively cause object j 
to some degree, and takes positive effect from 
object j to some lower degree. Object i cannot cause 
object j with no harm from object j, i.e., without 
(positive) side effect. Similarly, if upper bound 
value b = P is dominant over lower bound value a = 
N, i.e., |N| < |P|, that will cause positive effect from 
i-th object to j-th object but also will oppositely 
produce negative effect to some extend. In this case 
object j produces negative side effect to object i. No 
dominancy (|N| = |P|) resembles Newton’s action-
reaction law. As much we gain from one side, the 
same we lose from the other. 

Any NPN logic value can be represented as 
an ordered pair in [-1, 1] × [-1, 1]. The NEG, AND, 
and OR functions for both NPN crisp and fuzzy 
logics can be compactly described by the following 
three logic equations: 
 
 

NEG(x, y) = (NEG(y), NEG(x))   , (1) 

(x, y) ∗ (u, v) = (min(x ∗ u, x ∗ v, y ∗ u, y ∗ 
v), max(x ∗ u, x ∗ v, y ∗ u, y ∗ v))   , 

(2) 

(x, y) OR (u, v) = (min(x, u), max(y, v))   . (3) 

 
 

The star operator (∗) in (2) stands for a 
general conjunction operator that may be any T-
norm extended from the interval [0, 1] to [-1, 1]. 
The extension is made as follows: 
 
 

x ∗ y = sign(x) sign(y)(|x| ∗ |y|)   , (4) 
 
 
where x and y are singleton NPN values (fuzzy or 
crisp). In this paper we use ⋅ (dot or product) 
operator. 
 For the sake of briefness we will introduce 
the following definitions of NPN fuzzy relations, 
their transitivity and (heuristic) transitive closure, 
which play important role in reasoning with NPN 
relations, and skip some other formal definitions, 
which one can look for in [15]. 
 The following definition is an extension of 
classical fuzzy (binary) relation [17], which ensures 
assigning of NPN compound logic values to a NPN 

fuzzy (binary) relation as an ordered pair of 
negative, positive or neutral values: 
 
Definition: An NPN fuzzy (binary) relation R in 
X × Y, where X = {xi} and Y = {yj} are finite sets, 
is a collection of ordered pairs or a subset of X × Y 
characterized by a membership function µR(xi , yj) 
that associates with each ordered pair (xi , yj) a 
strength of relation between xi and yj using an NPN 
fuzzy logic value. 
 
 One of the very important sources of 
imprecision in complex systems is related to a 
transition behavior [5]. The effect of (imprecise) 
information propagation through a system may have 
significant influence on final decision-making, 
depending on weights of connections between 
concept nodes of a system’s network. Next 
definition provides formal description of max-∗ 
transitivity property of NPN relations: 
 
Definition: An NPN relation R (crisp or fuzzy) 
in X × X, where X = {x1 , x2 , ..., xn} is finite set, is 
NPN (max-∗) transitive iff, for all i, j, and k, 0 < i, j, 
k ≤ n, 
 
 
µR(xi , xk) ≥ 

jx
max (µR(xi , xj) ∗ µR(xj , xk))   . (5) 

 
 
 Since the connections between system’s 
concepts can be established by different relations we 
need to compose two or more relations in order to 
model information propagation, in FCMs usually 
represented by a fuzzy chain [5]. The (max-∗) 
composition of two NPN relations R ⊆ X × Y and Q 
⊆ Y × Z, denoted by R ° Q, is defined by 
 
 

yQRµ max=o (µR (x, y) ∗ µQ (y, z)),   x ∈ X, y 

∈ Y, z ∈ Z   , 

(6) 

 
 
and can be extended to n-fold composition denoted 
as Rn = R o  R o  ... o  R. 
 
Definition: The transitive closure R

(
 of an NPN 

relation R (crisp or fuzzy) in X, is the smallest 
(max-∗) transitive NPN relation containing R. Since 
the NPN logics used for transitive closure 
computation can be considered as a set of rules 
(heuristics), such closure is called a heuristic 
transitive closure (HTC) of R. 
 



 Using an heuristic path searching algorithm 
[15] we can find the possible and the most effective 
paths from one concept to another. That means, we 
can find the paths between elements (concept nodes) 
of FCM with the strongest negative and positive 
side effects that constrain decision making, 
according to the above two definitions. 
 
 
3 Process Planning Decision Analysis 
 
In this section we present a part of both research 
work and preliminary results of testing in a real 
industrial environment. 
 Following NPN logic and NPN relations 
extensions, we present new methodology for prior 
solution (decision) analysis in the machining 
domain, based on networking of meaningful 
concepts of the system. Prior solutions usually are 
provided by CAPP ES or an expert and such 
solutions sometimes turn to be inadequate due to 
many unexpected reasons. Our approach aims to 
provide a support to process planner when face a 
problem, answering what-if questions (Fig.1). 
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Figure 1: (F)CM based process planning DSS 
 
 We assume that (initial) process plan 
provide CAPP ES or an expert autonomously, 
interactively or by group consensus. Cognitive map 
(CM) module, shown in Figure 1, and all of its 
underlying components can be understood as a post-
processing unit for conflict resolution. Namely, if 
the results of initial process plan do not fulfill the 
requirements of a product we need to make 
balanced changes, since in a connected system 
every change in any element will cause smaller or 
larger side-effect in other elements. Therefore 
balanced changes are of crucial importance for 
achieving and maintaining equilibrium, i.e. stable 
state of a complex system. Obviously, we activate 
CM module only if needed, and after output analysis 
(F)CM-based process planning DSS provide 
recommendation to the user on the ways of system 
balancing in order to produce quality product and 
achieve overall effectiveness.  

In process planning there are a great number 
of data and information which process planner, i.e., 
human expert should summarize in order to make 
decisions. Some of them are objective and related to 
measurements. The other part is perception-based, 
i.e., subjective and rely on experience (previously 
learned knowledge). Anyway, all of it human expert 
is supposed to interpret and analyze and, finally, 
make appropriate decisions, leading to selection of 
optimal process planning elements and parameters’ 
values. These decisions (selections) determine the 
behavior of a system and influence its overall 
performance and effectiveness.  

It is a practice to select process planning 
elements and parameters’ values upon tools and 
machines manufacturers’ recommendations and 
personal experience. But very strong influence 
performs currently presented evidence and recently 
recorded analogous situations. Thus valuable 
recommendations cannot be followed precisely but 
rather approximately. This is caused by the nature 
(of a part) of information and data, their human 
interpretation and inability to realize optimal 
solution without loss of overall effectiveness and 
unacceptable or necessary increase of costs. 
 
 
3.1. Process planning NPN FCM 
 
Adjusting any of influential parameters usually 
effects others. Such effect, namely, side effect, can 
be acceptable, unacceptable and more or less 
indifferential, depending on ratio of negative and 
positive values of an compound NPN relationship. 
In order to investigate above mentioned problem we 
have constructed the FCM shown in Figure 2. Edge 
weights are assessed by experts from industry. 
  

Legend:
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Figure 2: Machining parameters NPN FCM 



Corresponding connection matrix is: 
 



























−−
−

−−
−−−

−
−−

=

05.0008.07.0
5.00003.00

4.0005.05.06.0
01.05.006.05.0
8.000002.0
7.02.00000

W    . 

 
 
 
 

(7) 

 
Heuristic path searching algorithm [25] 

identifies the most effective paths between any two 
concept nodes of NPN FCM. For critical node in 
this case (average surface roughness – Ra, concept 
node 6) we have chosen max-prod (max- dot) 
transitivity compositions defined by (2), (4) and (6). 
Identified heuristic paths are shown in the Table 1. 
 

Obtained results provide an answer to the 
question what should we do if prior solution for 
cutting parameters disable quality machining. 
Introducing an empirical restriction or constraint 
factor RF 
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compound value distance d(CV) = d(P, N) 
(Hamming distance) 
 

d(CV) = d(P, N) = |N| + |P| = |P - N|  , (9) 
 
and restriction strength 
 

RS = RF ⋅ d(CV)   , (10) 
 
we can refine obtained results in order to identify 
the most influential relationships whose negative or 
positive relationship values are the most restrictive 
and thus direct us to the most effective problem 
recovery procedure. These factors are summarized 
in the Table 2 for max – prod heuristic transitive 
closure. 

NPN logic based prior solution analysis 
provides different, but more informative result, i.e. 
answer to a given question. Comparing to the 
answer obtained from process planning FCM we 
can notice that cutting speed is yet very influential 
to surface quality (RS(v)max-prod = 2.64), which also 
reflects known physical dependency of cutting 
process. The same holds for rake angle (RS(γ)max-prod 
= 1.6).  

The results obtained by max-prod 
composition are very informative and suggest the 
following. Inadequate cutting depth (RS(δ)max-prod = 
1.376) could cause unacceptable vibrations of the 
machining system producing (indirectly) rough 
workpiece surface. Cutting feed has lower 
restriction strength (RS(s)max-prod = 0.534) than it is 
expected despite high connection weight (w16 = 
+0.8). It appears that its strength is balanced and 
reduced by relatively high influence of rake angle 
(w42 = -0.5) and cutting depth (w32 = -0.6) to the 
selection of feed. Cutting tool’s nose radius has 
relatively low influence to surface quality (RS(r)max-

prod = 0.509) only if other elements are properly 
selected, which is shown through heuristic paths 6-
4-1-5 (for dominant lower bound) and 6-4-3-2-1-5 
(for upper bound), but implicitly requires attention 
during initial process planning procedure. Finally, 
high restriction strength of the surface roughness 
(RS(Ra)max-prod = 1.828) and heuristic path C6 – C6: 
6-4-1-6 (for dominant lower bound) and 6-4-3-2-1-6 
(for upper bound) clearly state that adequate cutting 
geometry (concept node 4) and cutting speed 
(concept node 1) will provide low surface 
roughness, despite irritating effects of cutting depth 
(concept node 3) and cutting feed (concept node 2). 
However, process planner (decision maker) should 
keep in mind that cutting tools’ parameters depend 
on a number of other factors thus their changing 
could increase machining costs and therefore should 
be changed only if cutting parameters’ adjustment 
and tuning cannot bring required surface quality. In 
that case the whole process planning procedure 
should be repeated in order to select appropriate 
cutting parameters for a new cutting tool (Fig.1). 
 
 

 
Table 1: Heuristic paths and compound values of heuristic transitive max – min and max - prod closure 

Concept nodes C6 → C1 C6 → C2 C6 → C3 C6 → C4 C6 → C5 C6 → C6 
Heuristic paths (6 4 3 2 1) 

(6 4 1) 
(6 4 2) 

(6 4 3 2) 
(6 4 3) 

(6 4 1 6 4 3) 
(-) 

(6 4) 
(6 4 1 5) 

(6 4 3 2 1 5) 
(6 4 1 6) 

(6 4 3 2 1 6) 

Compound 
values of 
heuristic 
transitive max - 
prod closure 

 
 

(-0.024, 0.24) 

 
 

(-0.2, 0.12) 

 
 

(-0.2, 0.034) 

 
 

(0, 0.4) 

 
 

(-0.048, 0.005) 

 
 

(-0.168, 0.017) 

 



Table 2: Restriction factors, compound values’ distances, and restriction strengths 
for max – prod heuristic transitive closure 

Concept nodes C6 → C1 C6 → C2 C6 → C3 C6 → C4 C6 → C5 C6 → C6 
Restriction 
factor (RF) 10.00 1.67 5.88 4.00 9.6 9.88 

Compound 
value distance 
d(CV) 0.264 0.32 0.234 0.4 0.053 0.185 

Restriction 
strength (RS) 2.64 0.534 1.376 1.6 0.509 1.828 
 
4 Conclusion 
 
Complex systems and processes require specific 
modeling framework to enable causal description of 
a system behavior. One of the powerful approaches 
assume cognitive maps as a causal pictures of real 
world and cognitive mapping as a process of their 
constructing. This approach prerequisites various 
expertise conducted by human experts and utilize 
their experience and beliefs in system behavior. We 
have presented some of preliminary results of the 
research work related to the application of the NPN 
logic-based FCMs in metal cutting process planning 
decision analysis. The results, so far, proved to be 
very informative and reliable. 

Refinement procedure of NPN FCM output 
does not necessarily have to be defined as presented 
(8)-(10). Further development of the methodology 
will bring additional refinement procedure models, 
but in this stage it preliminary verifies our approach 
and demonstrates the strength of FCM 
representational framework to metal cutting process 
planning decision analysis. Further research work 
also includes investigation of different types of 
FCM augmentation, learning of edge weights and 
their dynamical behavior.  
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