
Simple Method
for Hierarchical Conceptual Indexing of Documents

Using Relational Data Model

A. GELBUKH, G. SIDOROV, and A. GUZMÁN-ARENAS
Natural Language and Text Processing Laboratory,

Center for Computing Research, National Polytechnic Institute,
Av. Juan Dios Batiz s/n, Zacatenco 07738, DF

MEXICO

Abstract: - A method for indexing and retrieval of textual documents is presented. The method allows for a
powerful query language with Boolean and proximity expressions (the latter refers to the possibility to search
for two or more keywords within the same paragraph or sentence or within a certain distance from each other).
Specifically, the method is designed for search with generalization (by the query mathematics, to find the
documents mentioning function, matrix, theorem, etc.) and to control morphological normalization (let the user
decide of the query matrix implies matrices). Another advantage of the method is the possibility to mix textual
(keywords) and relational (field values) data in one query. The query language is internally translated into SQL.
A system implemented by the authors according to the proposed method is described. Advantages and disad-
vantages of the method as compared with the query enrichment method are discussed.

Key-Words: - Information retrieval, hierarchical indexing, concept tree, relational model, automatic morpho-
logical analysis.

1 Introduction
Traditional keyword-based information retrieval
systems [1] lack flexibility in at least three important
aspects:

1. They do not allow performing search with gen-
eralization. For example, to find the documents
on mathematics, the user has to type all words
such as function, vector, matrix, differential,
theorem, etc., since it is unlikely for a paper on
mathematics to explicitly mention the word
mathematics.

2. They do not give the user control over matching
of inflectional forms. The system either always
or never matches the query matrix with the word
form matrices occurring in the text, regardless of
the user’s preference. Though this problem is not
very important for English, it is important for
many major languages such as Spanish, French,
or Russian, where a lexeme can have many (for
some languages, hundreds) of inflectional forms.

3. They do not allow the user to control how close
two (or more) given keywords, say, European
tours, should occur in the text. Though most in-
formation retrieval systems do distinguish be-
tween the keywords occurring anywhere in the

text (e.g., a newspaper mentioning tours to Aus-
tralia in one article and European industry in
another one) and a contiguous phrase (e.g., We
offer European tours for only $650), such sys-
tems usually do not allow to search for the words
occurring within a certain distance, sentence, or
paragraph (e.g., We offer tours to all European
countries).

In this paper we describe a system that does not
present such drawbacks.

1.1 Related work

1.1.1 Database issues
A partial solution to the first of these problems is a
system that permits navigation in a topic hierarchy,
such as, for example, Yahoo. Usually such systems
require manual document indexing, which is expen-
sive, imprecise, and subjective. Also, existing sys-
tems such as Yahoo lack a powerful query language
that would allow for combination of different search
conditions. However, the most important drawback
of such document hierarchies is that a document is
placed at some specific node of the tree and thus
cannot be retrieved at a more general node (i.e., a
document placed at algebra cannot be retrieved at

mathematics). Thus, such document hierarchies do
not provide a solution for the problem of retrieval of
specific documents by a general query.

The problem of manual indexing can be solved
with automatic document indexing using a concept
hierarchy dictionary (concept tree) [4]; in this paper
we assume such indexing method.

One can suppose that for handling hierarchical
queries, a hierarchical database model is necessary.
However, conventional relational databases are more
attractive because of their availability and, most im-
portant, availability of the corresponding search tools
and languages (specifically, SQL).

In [2] we have explored the possibility to use a
very simple relational database model (using only
simple Boolean expressions) for the task of keyword
search with generalization. There we proposed a
query expansion method. With this method, the
document-indexing procedure does not use the con-
cept hierarchy; instead, the concept tree is used at the
query time (thus, changes to the concept tree do not
require re-indexing). Though this method has impor-
tant advantages, they are at the cost of very large
query expressions used internally by the system. In
this paper, we explore a possibility to considerably
reduce the size of the query built internally by the
system, though at the cost of slightly larger index

and the necessity to know the concept tree at the
indexing time.

1.1.2 Linguistic issues
There are several linguistic techniques that allow for
more precise and effective document processing for
further retrieval, see [3, 5], such as morphological
analysis, synonymy, etc. For example, morphologi-
cal analysis permits to reduce several wordforms to
only one lexeme (which may be not so important for
the analytical language as English, but is absolutely
necessary for many other languages).

For example, with this technique the query stand
would retrieve the documents containing the word-
forms stand, stands, stood, and standing.

In this paper we propose to index the documents
using the concept tree and also applying automatic
morphological analysis.

Since the system has to be able to search by a
specific wordform (say, matrices but not matrix),
information on the location of individual word forms
within documents is to be preserved, i.e., like in [2],
what is to be indexed are wordforms rather than lex-
emes. However, unlike [2], here we propose an in-
dexing scheme that allows naturally expressing in
SQL the queries concerning lexemes or concepts.

Fig. 1. Query using the concept tree.

The main idea of the proposed method is to give
consecutive numbers to all wordforms corresponding
to the same lexeme, and similarly to the words that
correspond to each node in concept tree.

Currently we use relational data model for the in-
dex (though it may not the best model for our pur-
poses). Namely, we use one of the standard database
engines. Our system implements a rather sophisti-
cated query language internally translated into SQL.

The system was developed for Spanish language,
though the only language-specific components of the
system are the morphological table (a table with two
columns relating wordforms to lemmas: stood –
stand) and the word lists of the thesaurus (relating a
concept with the corresponding words: mathemat-
ics – formula, matrix, theorem, etc.). Thus, it is easy
to adapt the system for different languages by replac-
ing this table.

In the rest of the paper, we describe in detail the
procedure of hierarchical indexing and then briefly
describe the system and its query language.

2 Hierarchical Indexing
To find documents about science, one needs to
search for documents about mathematics, physics,
chemistry, etc. Specifically, to search for mathemat-

ics, one needs to retrieve the documents that contain
such words as function, theorem, matrix, etc. Finally,
to find the documents mentioning a matrix, one
needs to look for the letter strings (wordforms) ma-
trix or matrices. This can be done with a thesaurus
that organizes concepts and words in a tree: concepts
(e.g., science) include other concepts (mathematics)
or specific words (matrix), the latter being further
subdivided into specific wordforms (matrix, matri-
ces).

The concept tree has the following structure: the
terminal concept nodes are supplied with lists of
lexemes that correspond to them (each lexeme being
supplied with a list of its wordforms); the non-
terminal concept nodes join several terminal or non-
terminal nodes (see the example below). Each node
has only one parent node except the uppermost node
that does not have parent. (In fact, some nodes of this
hierarchy should have belonged to several different
parent nodes—say, the string well belongs to both
good and oil drilling; however, for sake of simplicity
of description we will ignore this complication, du-
plicating the corresponding elements when neces-
sary.) Thus, the terminal nodes of this structure are
specific wordforms.

The main idea of our indexing scheme is to estab-
lish a correspondence between each node in this tree

Fig. 2. Query using specific wordforms and Boolean operators.

(not necessarily the terminal one) and the words
(wordforms) that are below this node in the way that
the words are indexed with contiguous intervals of
numbers.

To assign the correct numbers (identifiers) to the
nodes (both terminal—wordforms—and non-
terminal), we traverse the tree in the depth-first order
and enumerate all terminal nodes (wordforms) start-
ing from 0. In this process, the morphological analy-
sis is applied to generate all wordforms of each lex-
eme node.

Non-terminal nodes are assigned identifier ranges
(i.e., pairs of numbers) corresponding to the span
covered by their sub-nodes, i.e., the first and the last
node below the given one. This is done in a one-pass
process: the initial number is assigned to a non-
terminal node when it is entered and the terminal
number when the enumeration process leaves the
node.

After this processing, the tree looks like the fol-
lowing (only the concept nodes are shown; terminal
concepts are shown in lowercase):

0 ANY TOPIC: 0–4624977
1 NATURE: 0–1282748
2 nature: 0–4
2 HUMAN BODY: 5–368954
3 the human body: 5–80

3 ANATOMY: 81–31261
4 anatomy: 81–162
4 reproductive system: 163–221
4 respiratory system: 222–252
4 skeleton: 253–15288
etc.

with, say, the wordform crania being assigned the
identifier 262 (below skeleton).

As one can see, currently the total number of
wordforms present in our hierarchy is 4,624,978—
the higher value of the ANY TOPIC node (the root
node).

In case if a word belongs to two or more different
terminal nodes it is indexed several times with dif-
ferent identifiers (with all its wordforms); if a word-
form is ambiguous, it is also assigned as many iden-
tifiers as necessary. Later, at the stage of indexing
the documents, the text containing such a wordform
is indexed as if there were several different word-
forms in the text: e.g., well is indexed as if the text
contained “well1 well2” with different identifiers, one
below the node good and another oil drilling).

Having the concept tree enumerated, it is possible
to begin indexing the documents. If the indexing
process finds in the documents a wordform that is
not in the tree, it gives them (with all their gram-
matical forms) identifiers continuing the enumera-

Fig. 3. Query using lexemes and proximity.

tion of the concept tree (i.e., the next available num-
ber). Currently, we consider all such wordforms as
belonging to a special concept unknown word.

After the documents have been indexed, we ob-
tain a relational database that for each running word
of each document contains the following data fields:

• the identifier of the wordform,
• the position of the running word in the document

(starting from the first word of the document),
• optionally the number of sentence or paragraph.

With these data, it is easy to search using a rich lan-
guage combining in the same query individual word-
forms, lexemes, or concepts. An example of a query
is given in the next section.

3 Implementation
We have developed the system that implements the
indexing method described above. The system im-
plements a sophisticated query language with Boo-
lean operations and proximity criteria, translated
internally into SQL. The main advantage of the sys-
tem is the possibility to search mixing concepts,
lexemes, wordforms, and other available information
about the documents (for example, for a scientific

project, the initial and final date, funding, responsi-
ble person, institution, etc. can be available).

The queries are translated into SQL in an obvious
way:

• An individual wordform, say, cranea, is translated
into an expression “x.id = 262” (where 262 is its
identifier and id is the name of the identifier field);

• A lexeme, say, cranium, is translated into an
expression “x.id >= 261 and x.id <= 262” (where
the numbers correspond to the range covered by
the lexem); this is especially useful for lexemes
ðôìø òï hundreds of wordforms, as is true for
Spanish or Russian verbs;

• A concept, say, ANATOMY, is translated in a simi-
lar way: “x.id >= 81 and x.id <= 31261”.

• Proximity, say, within 8 wrds is translated into
“x.document = y.document AND mod (x.position
– y.position) < 8”; proximity within, say, 2 para-
graphs is treated similarly.

Such expressions can be combined using Boolean
operators. As the result, the value of x.document
field is used to compile the list of found documents.

The system implemented for Spanish language
was tested on the descriptions of research projects
developed in our Center, so that the database has
some traditionally relational fields mentioned above.

Fig. 4. Query mixing textual and relational data.

Sample screens of the system are shown in the
figures. In Fig. 1, a query using concept tree is
shown. The query is shown near the top of the win-
dow. In the left-hand part of the window, the buttons
corresponding to the operators of the query language
are located. The central part of the window contains
the concept tree (we use English for concept labels),
from which the user can choose the necessary node.
Individual lexemes corresponding to a terminal con-
cept node are shown in the right-hand part of the
window (in our implementation, the lexemes are
Spanish). A dropdown control in the center of the
window indicates that the data are to be searched in
the text of the document (see below the discussion of
Fig. 4); the same is indicated in the query area.

In Fig. 2, specific wordforms of the Spanish
word encontrar ‘find’ are added: encontraron ‘they
have found’ and encontramos ‘we have found’,
while, say, encontraste ‘you have found’ is not in-
cluded. The wordforms are chosen from the list.

In Fig. 3, an exact phrase (a sequence of lexemes
recuperación de información ‘information retrieval’
in this case) and a proximity expression método Bae-
za ‘method ... Baeza’ are added. The latter corre-
sponds, say, to a phrase The method suggested by
Ricardo Baeza Yates.

Finally, in Fig. 4 another type of the information
is added: place (lugar in Spanish) where the project
was proposed, in this case the Mexico state (the
right-hand part of the window shows specific cities
in the Mexico state; we use lowercase for all words).

4 Conclusions
We presented a simple method for document index-
ing and search with hierarchical generalization, con-
trol of morphology, and with combination of textual
and relational (tabular) data using a powerful query
language with Boolean and proximity expressions.
The method is based on the use of traditional rela-
tional data model; the queries are internally trans-
lated into SQL.

Technically, the method consists in enumera-
tion of all possible (used) strings (wordforms) in
the depth-first order in the tree, and using the
obtained identifiers in SQL expressions for the
nodes of the tree: a node is associated with the
first and the last identifier of a string below the
node. In case of ambiguity a string is assigned
several different identifier, one for each node it

belongs to. The documents are indexed using
these identifiers for each string found in the text.

An advantage of the method as compared
with [2] is much smaller internal queries (thus
faster search). A disadvantage is a large index
and the necessity to re-index the documents if
the concept tree or morphology table is signifi-
cantly changed (for slight changes, holes can be
left in advance in the enumeration of the identi-
fiers).

The method can be easily adapted (this is also
implemented in our system) to assign relevance
weights to the documents according to the fre-
quencies of the keyword found in the text.

References:

[1] Baeza-Yates, Ricardo, and Berthier Ribeiro-
Neto. Modern information retrieval. Addison-
Wesley Longman, 1999.

[2] Gelbukh, Alexander. Lazy Query Enrichment: A
Simple Method of Indexing Large Specialized
Document Bases. Proc. DEXA-2000, 11th Inter-
national Conference and Workshop on Database
and Expert Systems Applications, Greenwich,
England, September 4-8, 2000. Lecture Notes in
Computer Science N 1873, ISSN 0302-9743,
ISBN 3-540-67978-2, Springer-Verlag, pp. 526–
535.

[3] Gelbukh, Alexander, and Grigori Sidorov. Intel-
ligent system for document retrieval of the
Mexican Senate. Proc. CIC-2000, Congreso In-
ternacional de Computación, November 15–17,
2000, CIC, IPN, Mexico D.F., ISBN 970-18-
5540-X, pp. 315-321.

[4] Gelbukh, A., G. Sidorov, and A. Guzman-
Arenas. Use of a weighted topic hierarchy for
text retrieval and classification. In Václav Ma-
toušek et al. (Eds.). Text, Speech and Dialogue.
Proc. 2nd International Workshop TSD-99,
Plzen, Czech Republic, September 13–17, 1999.
Lecture Notes in Artificial Intelligence, No.
1692, Springer (http://www-kiv.zcu.cz/ events/
tsd99/ abstract.html), pp. 130–135.

[5] Sidorov, G. O. Lemmatization in automatized
system for compilation of personal style diction-
aries of literature writers. In: “Word of
Dostoyevsky”, Moscow, Russia, Russian Acad-
emy of Sciences, 1996, pp. 266–300.

