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Abstract: - In this study, we discuss the derivation, applications and the necessity of the traffic dispersion model, 
which is a nonlinear Poisson equation. Also, the analyses are presented in the content. The model is derived from 
the interaction among vehicles on a road. Therefore, the traffic pressure can be described by the model and the 
relation between density and the traffic pressure, which is transformed into the traffic field in this study actually. 
By the dispersion model, density on a multilane road can be distributed according to the interaction that makes 
the discussion of multilane traffic easy. If there are multiple types of driving behaviors, the density and the 
interaction can also be related by the model under the finite-space requirement, which describes all kinds of 
vehicles share the same road section. Thus, the closure relation of dynamic traffic model is obtained by the 
dispersion model with equilibrium relations. Furthermore, the analytical solution of linear model and analyses of 
the nonlinear model are presented in this study. 
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1   Introduction 
Traffic flow researches are generated by the 
worsening of urban traffic congestion, especially in 
the recent two decades. According to the history of 
traffic flow researches, modeling approaches evolve 
from static models to dynamic models. The main 
applications of the static models are planning and 
design. On the other hand, the main applications of 
the dynamic models are traffic control and prediction 
of dynamic information. In the development of the 
dynamic traffic flow, the car-following theory [1,2] 
and the kinetic wave theory [3,4] are the first two 
dynamic modeling approaches. After that, 
Boltzmann-like model [5], vehicular gas-kinetic 
model [6, 7] and cellular automation [8] are 
presented.  

Since most roads are multilane in the real world, 
traffic flow researches are extended from single lane 
models to multilane models. Car-following theory is 
extended to multilane traffic by Wiedemann [1], who 
incorporated lane-changing and overtaking in his 
modeling approach. His modeling approach becomes 
the foundation of many emporary microscopic 
multilane models. Compressible fluid models are 
also extended for multilane freeway on-ramp 
perturbation studies by Munjal and Pipes [9]. In these 
studies, the rate of lane-change is hypothesized as an 
oscillation around the difference of equilibrium 
densities between adjacent lanes. In the studies of 
lane-changing behavior, work using mathematical 

modeling had been done by Munjal, Hsu and 
Lawrence [10], Michalopoulos, Beskos, and 
Yamauchi [11] and etc. Hoogendoorn and Bovy [7] 
have developed a multilane multiclass traffic flow 
model based on mesoscopic principles. The model 
inherits a number of the properties of the gas-kinetic 
equations (e.g. description using platoons, 
finite-space requirements). Cho and Lo [12] also 
presented a dynamic multiclass multilane traffic flow 
model by a similar deriving procedure. The 
systematic model includes continuity, motion and 
variance equations, so as to describe the evolution of 
the traffic flow. The state of the traffic flow is 
determined by the dispersion model, which is a 
nonlinear Poisson equation.  

In this study, we discuss the applications and the 
analyses of the dispersion model in detail. There are 
several important applications of the dispersion 
model. Firstly, the model is employed to describe the 
state at each time point. As mentioned above, the 
multilane traffic model is a difficult problem. The 
dispersion model provides a simple modeling 
approach. Secondly, the dispersion model also 
implies the finite-space requirements. If there are 
multiple types of driving behaviors, the model can be 
employed to evaluate the aggregated influence of 
density. This advantage is useful when vehicles are 
not restricted to drive along one by one in a single 
lane, such as motorcycles and bicycles. Another 
importance of the dispersion model is the model 
relates the basic variables in traffic flow and makes 



the systematic equations self-consistent [12]. The 
analytical solution and analyses are also show in this 
study. 

The rest of this paper is organized as follows. 
Section 2 presents the derivation of the linear 
dispersion model briefly. Section 3 introduces the 
analytical solution of the model. Section 4 extends 
the model to the nonlinear Poisson equation and its 
solution method. In section 5, the applications of the 
model for traffic flow are shown. After that, the paper 
concludes with some perspectives in section 6. 

 
 

2   Derivation of the Dispersion Model 
In this section, the dispersion model is derived in 
brief. A multilane road is considered as a 
two-dimensional domain, herein. Such a 
consideration simplifies the discussion of multilane 
traffic behavior and makes the development of 
multilane models much easier. Therefore, we review 
the definition of the three basic traffic variables in 
two-dimensional space at first. The variables are 
defined in the rectangular Cartesian coordinate 
system. Flow [pcu×time-1] denotes the number of 
vehicles (or passenger car unit, pcu) passing through 
a certain section during a given time period. Flow is a 
scalar and is denoted by Q . Density [pcu×length-2 or 
pcu×length-1 per lane] is the number of vehicles 
(pcu) occupying a section of road. Density is a scalar 
and is denoted by k . Velocity [length×time-1] 
denotes the length that vehicles passing through 
during a specified time period. Velocity is a vector 
and is denoted by ( )yx uu ,=u , where xu  and yu  
means speed in x- and y-direction, respectively. 

( ) 2122
yx uu +=u . A new variable flow density 

[pcu×(length×time)-1] which denotes the number of 
vehicles (pcu) passing through a unit width of a road 
in a given time period is introduced. Flow density is a 
vector and is denoted by ( )yx qq ,=q , where xq  and 

yq  means flow in x- and y-direction, respectively. 

yq  can only be zero, if there is no entrance or exit 

from the roadside. ( ) 2122
yx qq +=q . uq k= , where 

( ) ( )yxyx qqkukuk ,, ==u .  
The dispersion model is based on the concept of 

traffic field, which is extended from car-follow 
theory. Car-following theory [2, 13, 14] describes that 
each driver reacts mainly to a stimulus from his 
immediate environment according to the relationship 
as (Reaction) Tt+ = λ (Stimulus) t , where λ  is a 
sensitivity coefficient and T is a reaction time-lag. 
The general car-following model is 
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where ( )txn 1+  denotes the position of the n+1 th 
vehicle at time t, x′  and x ′′  are its velocity and 
acceleration. Equation (1) can be treated as Newton’s 
law, which implies that acceleration is induced by 
external force. On the other hand, the external force 
can also be described by field, especially the isolated 
force. For the sake of safety, one vehicle on a road 
adjusts its velocity and spacing according to the 
relative position between others cars so as to avoid 
accidents. It is assumed that each vehicle has its own 
field. As mentioned above, the traffic pressure (or 
traffic force), which is produced by the interaction 
among vehicles, is a resistance. On the other hand, 
the vehicles are assumed to be pushed forward by a 
traffic force on the boundary. Thus, the total force of 
thrust and the resistant force determine the velocity 
and acceleration of vehicles on the road. By 
Newton’s law, traffic field E~  is in proportion to 
acceleration dtdv , where v  is individual velocity. 
From the discussion of car-following theory, it can 
also be assumed that traffic field ( E~ ) depends on 
velocity and headway. To simplify the complication 
of the problem, E~  is assumed to depend on spacing 
and to satisfy the inverse-square law. It is reasonable 
to assume that the influence of cars in the same lane is 
larger than that in the adjacent lanes. Let the 
influence of cars in the same lane be M times larger 
than that in the adjacent lanes. If we consider the 
interaction between two vehicles (vehicle 0 and 1), 
the traffic field produced by vehicle 1 (leader) will act 
on vehicle 0 (follower). The traffic field acting on 
vehicle 0 can be formulated as: 
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where e is the passenger car equilivalent, 0ε  is the 
interacting parameter, ( )00

~,~ yx  and ( )11
~,~ yx  are the 

positions of vehicle 0 and 1, respectively. The 
influence between two vehicles is larger as the 
distance between them is smaller in the real traffic 
stream. Therefore, the assumption of inverse-square 
law is reasonable herein. For the sake of convenience, 
we transform the domain from Ω~  to Ω , that is, let 

yMyxx ~,~ ==  and traffic field acting on vehicle 0 in 
Ω  is denoted by  

3
0

01
X
XE

ε
e

= ,                                                 (3) 

where X  denotes the distance vector from vehicle 0 
to vehicle 1. Under the assumption of superposition, 



the relation between two vehicles can be extended to 
the whole road section. The traffic field acting on 
vehicle 0 is represented as 

( )∑=
N

i
iiii εe 3XXE ,                                               (4) 

where N is the number of vehicles that may interact 
with vehicle 0, iX  denotes the spacing from vehicle i 
to vehicle 0. In the continuous space, equation (4) can 
be represented as 

( )( ) Ω−= ∫Ω dkk
ε
e

s
2XE ,                                    (5) 

where Ω  is the road section and ε  denotes the 
interacting parameter. k  is the density and sk  is the 
unrestrained density under the given condition. Then, 
a potential function φ  exists by the potential theory. 
Because the traffic field is a conservative field, which 
induces that the traffic potential of a vehicle depends 
on its relative position only and the potential is 
independent of its moving path. This result makes us 
to discuss multilane traffic easy. If we have to 
consider the possible paths of a vehicle, the problem 
will become more complicated than considering the 
position only. The potential function φ  satisfies 

φx−∇=E . Thus, the magnitude of traffic field is 
illustrated as  

( ) as Kkkediv +−=∆−= εφE ,                          (6) 

where divE denotes the magnitude of traffic field, 
( )xKK aa = , which depends on the position x, is the 

adjust term of the road condition if the road condition 
is ideal 0=aK .  

 
 

3   Analytical Solution of the Linear 
Dispersion Model 

The dispersion model needs to couple with a set of 
boundary conditions to make a model complete. 
Since vehicles move forward along a specific 
direction, the boundary condition of the model should 
be given in order to consist with the situation. If 
vehicles move from left to right, the left boundary 
condition must be larger than the right boundary 
condition. Because vehicles moving along the 
direction of traffic field, which is directed from high 
potential to low potential. However, the traffic 
potential cannot be measured directly. The boundary 
conditions have to be transformed from density by 
equation (6). If a model with a set of boundary 
conditions are given as follows: 
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where xL  and yL  are the length of the research 
doamin in the x- and y-direction. The boundary 
conditions mean that there is no entrance and exit on 
the both roadsides. In addition, inflow density, 
velocity, outflow density and velocity are controlled 
by specific function, such as signal or speed limited. 
Solving the following three sub-problems, we will 
obtained the solution of problem (7) by superposing 
the three results. 
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The problems can be solved by separation of 
variables. Solution problem (8), (9) and (10) are 
shown as equation (11), (12) and (13), respectively.  

∑
∞

=

−+−=
1

0 )cos()1(sinh)1(),(
n

n ynxnBxByx ππφ ,     (11) 

where iB , for i=0,1,…, are determined by the 
Fourier coefficients of g(y).  
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where 0f  is determined by the Fourier coefficients 
of f(y). 
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where mnk , for m=0,1,…, n=0,1,…, are determined 
by the Fourier coefficients of ( ) as Kkke +− ε .  
Therefore, the general form of the analytic solution is 
shown as 
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where  iA , iB , iC , iD , iE  and iF  are coefficients, 
which are determined by the boundary conditions and 
the explicit form of density function. Also, the 
dispersion model can be solved by the numerical 
methods such as finite difference methods, finite 
elements and finite volume methods. typical cases are 
illustrated as follows: The existence and uniqueness 
can be proved by the maximum principle. 

 
 

4   Nonlinear Dispersion Model 
The vehicular dispersion model derived in the 
previous section is a linear Poisson equation, since 
density only depends on position and time. The 
dispersion model implies several facts. The first one 
is that the magnitude of traffic field is large as density 
is large. The second one is that the direction of field is 
from high protential to low potential. As a matter of 
fact, density is distributed by traffic field, which is 
induced by traffic potential. However, the linear 
traffic dispersion model describes that potential is 
determined by density function and density is 
independent of potential; that is, ( )k,xφφ = , 

( )tkk ,x= . As we know that density and potential 
should depend on each other; that is ( )k,xφφ = , 

( )φ,,tkk x= . Because of the reason, a nonlinear 
dispersion model is presented. We assume that the 
density will tend toward its equilibrium distribution, 
which is the most possible microscopic state under a 
specific macroscopic situation. Hence, the 
equilibrium distribution is derived from a 
mathematical programming, whose objective is 
finding out the most possible microscopic state under 
the specific macroscopic phenomena given by the 
constraints. The mathematical programming is shown 
as follows: 
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where i is the number of intervals, N is the number of 
total vehicle, in  is the vehicle number of interval i, 

tolΘ  is the total velocity variance, and iΘ  is the 
velocity variance in invertal i. The velocity variance 
of individual car is defined as 2

ei uu − , where iu  is 

the average velocity of interval i and eu  is the 
equilibrium velocity. Equation (15) is the objective 
function, and equation (16)~(17) are given 
macroscopic phenomena. Equation (15) finds the 
most possible number of combinations of in  if the 
total number of cars on the road is N. Equation (15) is 
in a simplified form, which neglects the all-possible 
combinations of the denominator, since the 
denominator is a constant. Equation (16) is the 
conservation of vehicle numbers, and equation (17) is 
the conservation of total velocity variance. The 
mathematical programming (15)~(17) can be solved 
by the following steps. First, use Stirling’s equation 
to approximate equation (15), and 

∑−=
i

ii nnNNW lnlnln  is obtained. From the first 

order condition, when W is the maximum, 
0max =∂∂ inW  is true, which implies 0ln max =∂∂ inW . 

Then, by KKT condition, we have 

( ) ( )eeNn ΘΘ−Θ=Θ exp .                                       (18) 

The traffic variable concerned in this study is density 
(k). Let the essential density 0K  be 2hN eΘπ , 
mobile density is  

( ) ( )eKk ΘΘ−=Θ exp0
.                               (19) 

Equation (19) describes that as velocity variance 
increases, density decreases, which implies that 
vehicles with large velocity variance can spread out 
easily but induces unstable traffic flow at the same 
time. However, in the real traffic condition, the 
mobile density does not spread out immediately as 
the velocity variance increases. There exists a 
threshold 0Θ . When the velocity variance is larger 
than 0Θ , the mobile density will be less than the 
essential density; otherwise the mobile density will 
be larger than the essential density. The modified 
model is 

( ) ( )( )eKk ΘΘ−Θ−=Θ 00 exp .                                      (20) 

Therefore, vehicles are distributed on the road by 
equation (20). In traffic flow study, not all traffic 
conditions need to consider velocity variance. Some 
simple cases only need to consider density or density 
and velocity at the same time. For this reason, 
converting velocity variance to traffic potential is 
necessary. From the relation among the traffic field, 
traffic pressure, traffic potential and velocity variance, 
equation (20) becomes 

( )eeeKk Θ−= φψexp0
,                                        (21) 



where ψ  is the potential equivalent of the velocity 
variance threshold 0Θ ; that is, e0Θ−=ψ . ψ  is 
named as potential barrier here. Equation (21) gives 
the equilibrium distribution of density and implies 
several facts. The first one is that density is 
decreasing as traffic potential is increasing. The 
second one is as the equilibrium velocity variance 
increases, the variation of density increases, which 
means the traffic is sensitive. The third one is as the 
potential barrier is low, the density is small. That is, 
drivers are aggressive. They can spread out easily 
although the velocity variance is small. Figure 1 
illustrates the three aspects. Coupling equation (6) to 
(21), the nonlinear dispersion model is given as  
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Fig. 1 The density curves of different potential barrier 

and equilibrium velocity variance, where 
( )( )1101 exp eeeKk Θ−= φψ , ( )( )2102 exp eeeKk Θ−= φψ  and 

( )( )1203 exp eeeKk Θ−= φψ . 
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The nonlinear model  
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By central difference method, we can derive a 
direct computation equation (10). 
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where ihx  is the length of the interval i in x-direction 

and jhy  is the length of the interval j in y-direction 

 
 

5   Applications for Traffic Flow 
Solving the model with boundary conditions, the 
potential function is determined. Thus, the traffic 
field is obtained by equation (6) and density is 

obtained by equation (21). From the traffic field, we 
can observe how traffic pressure acts on vehicles 
driving along the road. Also, the variation of velocity 
variance can be observed. With traffic force, velocity 
variance and density, the multilane traffic behavior 
can be described. Figure 2 is an example of a basic 
section of freeway [15], which is behind an on-ramp. 
Vehicles tend toward the inside lane and the trend of 
the vehicles in the outside lane is stronger than that of 
the vehicles in the median lane. That is, there are 
more vehicles trying to change lanes in the front part 
of the outside lane. However, the lane-changing trend 
keeps a longer distance in the median lane. If the 
uninterrupted section of the freeway is long enough, 
the traffic flow will become uniform. The 
information is also useful to design the location of the 
interchanges of the freeway so as to optimize the 
traffic volume. 

 

outside
lane

inside
lane

median
lane

 
x direction  

Figure 2. The traffic field of the numerical example, 
which shows that vehicles tend to move to the inside 

lane and the traffic flow will become uniform. 
 
The system can be extended to multi-class users 

model by employing the concept of Hoogendoorn 
and Bovy [7]. They considered that each class has 
different behavior, and share the same limited space. 
The concept can be applied to Poisson equation 
easily. If there are i classes of users or vehicles on the 
road, equations (6), (21) are modified as equations 
(25)~(26) and the aggregated density is given by 
equation (27). 
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Equations (25)~(27) are very useful as vehicles are 
not restricted to move along a single, such as the 
motorcycles in Taiwan. The most important 
application of the dispersion model is making a 
dynamic system self-consistent. A solving procedure 

k1 k2 

k3 



of a self-consistent dynamic system is illustrated in 
figure 4 [12]. The concept of modeling can handle the 
different characteristics and distribute density on a 
road.  
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Fig. 3 motorcycles and cars mixed flow 

initial conditions and
boundary conditions

distribute density by the
dispersion model

obtain traffic potential (or
traffic field)

evolution of 1st
class user

evolution of ith 
user

evolution of 2nd
class user ...

obtain density

 
Fig. 4 Self-consistent traffic flow modeling 

 

6   Conclusions and Perspectives 
Mostly, Poisson equation is employed to describe the 
diffusive phenomena, such as heat and density, in 
physical researches. It is introduced into traffic flow 
research to explain the dispersion of vehicles in this 
paper. Traffic flow theory is the fundamental 
research of traffic science. In this study, the analyses 
and applications are presented. The model can be 
employed to analyze multilane, multiclass users 
traffic. The most important application is coupling 
the dispersion model with kinematic models and 
consists a self-consistent system. The linear 
dispersion model is solved by the analytical solution 
and the nonlinear dispersion model must be solved by 
a numerical scheme. The researches of numerical 
analyses are left for further researches. 
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