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Abstract: - The need to generate not only syntactically valid Genetic Programs but also programs which remain 
syntactically valid, even after the applying of the crossover and the mutation operators is crucial for the good evolving of 
the genetic programs. In this sense, programs shall be represented such way that constants, variables and operators 
inherent to the problem be correctly  represented during all the evolving process long. Actually, a string representation 
does not get the above requirements due to the syntactically wrong programs produced by genetic operators. This paper 
propose a String Representation Methodology to generate syntactically valid Genetic Programs. The Symbolic Regression 
is the area which is showed our representation. 
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1    Introduction 
The Symbolic Regression tries to adjust an arithmetic 
expression to fit as much as possible the whole set of 
points that describe the behavior of a problem[1], the 
figure 1 shows an example of both a desired and an 
approximated curve. The more a curve is adjusted by the 
Symbolic Regression to the desired curve the better 
results are gotten when used this curve in order to 
classify new and unknown inputs or to predict outputs 
for unspecified inputs. 
 

Fig. 1.- An example of both a desired 
curve and a Symbolic Regression 

approximated curve.
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As is well known, at the beginning of a Genetic 
Programming Process, a genetic population of programs 
is randomly generated. A common problem is 
introduced in each genetic program when the arithmetic 
expression which describes the program possesses a non 
valid syntactical structure.  Equation 1 shows a valid 
program while the equation 2 a non valid program. 
 

VP = X + 1 * 4*X - 2/2*X  (1) 
NVP = X +/ 3 -* 5X +-*  (2) 

 
In this sense, we shall ensure that the method which 
generates the programs is leaded for a valid String 
Representation Methodology. 
 
Now, suppose we have all of the program in the initial 
population having a right structure, the following step is 
to evaluate via the fitness function how good each 
program is to solve the current problem, the Symbolic 
Regression. Subsequently, in order to reproduce the 
programs into the next population, we may apply one of 
the Reproduction operators reported in most of the 
scientific papers related to the Genetic Programming 
area (e.g. Proportional Selection[2], Tournament[3]). 
Using any of the above reproduction methods does not 



introduce alteration in the structure of the program, so 
they maintain their validness. 
 
However, applying the crossover operator may produce 
syntactically non valid programs. Consider the following 
valid programs, see the syntax’s trees in the figures 2 
and 3: 
 

VP1 = X + 5 * X – 2* X + 1   (3) 
VP2 = X * X –2 * 4    (4) 

 
 

If crossover positions chosen randomly are element 4 for 
VP1 and element 3 for VP2 the resulting programs are:  
 
Before crossover: 

VP1 = X + 5 * X – 2 * X + 1   
VP2 = X *  X –2 * 4         

After crossover: 
NVP1 = X + 5 X – 2 * 4  (5) 
NVP2 = X * * X – 2 * X + 1  (6) 

 

As we can see, there is no operator between elements 3 
and for in the equation 5 and a double operator between 
elements 1 and 4 in the equation 6. Then, the whole 
genetic process is affected due to syntax’s defaults 
within the programs. 
 
Would be good enough if we consider just homogeneous 
crossover points (e.g. operator-operator)? Consider now 
a crossover at the element 4 in equation 3 and the 
element 2 for equation 4, both of them are operators. 
 
Before crossover: 

VP1 = X + 5 * X – 2 * X + 1  
VP2 = X * X –2 * 4         

After crossover: 
NVP3 = X + 5 * X –2 * 4 (5) 
NVP4 = X  * X – 2 * X + 1 (6) 

 
It happen to be that we have gotten two valid programs, 
in fact they are. But our intentional crossover was not 
fulfill ed, observe figures 2 and 3 where is shown the 
syntax’s trees for both the VP1 and the VP3. The dotted 
squares shown in these figures ill ustrate two sub-trees, 
which according to [4], the planned crossover was a 
swapping between them. Said in other words, offspring 
programs should preserve most of the information 
contained in their parents [5]. 

Now, if we consider the resulting programs in  equations 
5 and 6, Although they are structural valid are product of 
a very different crossover, see figures 4 and 5. While the 
intentional crossover is an exchange between sub-trees 
enclosed for the doted squares the real crossover was a 

Fig. 2.- Syntax’s tree for the valid 
 program 1. 
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Fig. 3.- Syntax’s tree for the valid 
 program 2. 

Fig. 4.- The Intentional and Real crossovers for 
program 1. 
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big swapping between those “sub-trees” in the shaded 
vicinities. The resulting trees (offspring trees) are mostly 
the product of a randomly generated tree than a 
lengthening of the parents’ information. 

 
What happen if we consent this kind of erroneous 
crossover? What we can foresee is a random search 
process which will not be able to assess any good result. 
 
The same problem is observed during the applying of 
the Mutation operator, consider the program in equation 
3 and a Mutation at its element 4: 
 
Before mutation: 

VP1 = X + 5 * X – 2 * 10*X + 1       
After mutation: 

NVP5 = X + 5 X X – 2 * 10*X + 1 (7) 
 

Equation 7 shows a non valid program with three 
operands between elements 2 and 6. Even though we 
may formulate a special Mutation operator (e.g. If 
element equals operator then randomly generate another 
operator, else, generate either a variable or a constant), 
the specifications for a mutation say that we have to 
choose any element (either operator or variable or 
constant) from the program, eliminate de sub-tree rooted 
at this point and randomly generate another sub-tree [4]. 
The figure 6 shows a doted square with the real mutation 
and a shaded vicinity with the desired one. 
 
The following sections describe the proposed String 
Representation along with the methodology to apply 
both the crossover and the mutation operator in such 
way that the structure of the programs  remain correct. 
The problem related to the Symbolic Regression is used 
to show how this representation works. 
 
 

2    Developed Methodology 
As a problem formulation, we can declare that it is 
required a string representation which not only produces 
syntactically valid genetic programs but also that the 
structure of the programs remains accurate amid the 
genetic process. 
 
 
2.1.- Generational Methodology 
In order to adjust an arithmetic expression to a desired 
set of points, our representation must include two kind 
of elements: a set NT of non terminal elements (e.g. +, -
,*,/, abs( ), sin( ), pow( ), etc.) and a set T of terminal 
elements (e.g. constants such as 4, 3 and 9 or variables 
such as X or Y). 
 
Be X a vector of inputs {x1, x2, …, xn} and Y a vector of 
desired outputs {y1, y2,…,yn}, see figure 1, and 
D={1,2,…,9}. We may consider the following sets NT = 
{+, *, -} and T = {X, D} with a numeric representation 
of NT ={ -3, -2, -1} and T={ 0, [1,9]}  to build any 
program within the initial pool and propose a recursive 
methodology to generate syntactically valid genetic 
programs; with the intention of avoid using parenthesis 
in the program, we have chosen a postfix notation to 
generate our programs: 
 
programGeneration(NumberOfNonTerminals) 
 non_terminalGeneration( ) 
 left_treeGeneration( ) 
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Fig. 5.- The Intentional and Real 
crossovers for program 2. 
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Fig. 6.- The Intentional and Real mutations for 
program 1. 



 right_treeGeneration( ) 
 return 
terminalGeneration( ) 
 counter = 1 
 generate a random number from NT 
 return 
left_treeGeneration( ) 
    if (counter < NumberOfNonTerminals) 

generate either a 
  random number from NT or T 
 if (number_generated ε NT) 
  counter++ 
  left_treeGeneration( ) 

 right_treeGeneration( ) 
    else 
 generate a random number from T 
    return   
right_treeGeneration( ) 

 if( counter < NumberOfNonTerminals ) 
  generate a random number from NT 
  count++ 
  left_treeGeneration( ) 

 right_treeGeneration( ) 
 return 
if ( counter = NumberOfNonTerminals) 
 generate a random number from T 
return 
 

VP0 <S5> -2 -3 -3 -3 -2 3 7 3 2 5 4 
VP1 <S5> -2 0 -1 2 -3 5 -1 -2 9 7 6 
VP2 <S5> -2 4 -1 -1 -3 7 -1 1 0 0 0 
VP3 <S5> -1 -2 0 -3 0 –2 1 –1 3 0 8 
VP4 <S5> -1 -3 -2 0 -3 -3 5 0 6 0 0 
VP5 <S5> -1 -1 2 -3 -3 -3 1 1 7 5 3 
VP6 <S5> -2 9 -1 -2 0 -3 -2 6 5 4 6 
VP7 <S5> -2 -1 3 -3 2 -3 5 -1 9 8 0 
VP8 <S5> -2 -1 -3 -3 1 -1 9 4 0 2 0 
VP9 <S5> -1 -3 -3 -1 -2 7 0 0 0 1 3 

 
Table 1.- Initial pool of syntactical valid 

Genetic Programs. 
 
The table 1 ill ustrates a set of ten syntactical valid 
programs generated via the above methodology, each 
program has a size of 5 non-terminal elements (S5). The 
corresponding set of real programs are shown in the 
table 2. 
 
As we can see, every program begins with a non-
terminal (binary operator) followed by a left sub-tree 

and a right sub-tree.  Every left sub-tree begins either 
with a terminal or a non-terminal element (depending on 
the non-terminals’ counter), for each non-terminal 
element a recursive call i s done to generate both a left 
sub-tree and a right sub-tree. Every right sub-tree mostly 
begins with a non-terminal element depending on the 
non-terminals’ counter or with a terminal element. 
 

VP0 <S5> mul(add(add(add(mul(3,7),3),2),5),4)
VP1 <S5> mul(X,sub(2,add(5,sub(mul(9,7),6)))) 
VP2 <S5> mul(4,sub(sub(add(7,sub(1,X)),X),X)) 
VP3 <S5> sub(mul(X,add(X,mul(1,sub(3,X)))),8) 
VP4 <S5> sub(add(mul(X,add(add(5,X),6)),X),X) 
VP5 <S5> sub(sub(2,add(add(add(1,1),7),5)),3) 
VP6 <S5> mul(9,sub(mul(X,add(mul(6,5),4)),6)) 
VP7 <S5> mul(sub(3,add(2,add(5,sub(9,8)))),X) 
VP8 <S5> mul(sub(add(add(1,sub(9,4)),X),2),X) 
VP9 <S5> sub(add(add(sub(mul(7,X),X),X),1),3) 

 
Table 2.- Real formatted Initial pool. 

 
At this point, it was shown that the proposed string 
representation methodology generates a set of programs 
having a valid full syntactical structure. 
 
 
2.2    Crossover Methodology 
During the crossover process, we have to choose 
randomly both two programs and a crossover point for 
each program. Next, We have to extract the sub-trees 
rooted at the selected crossover points in order to swap 
them. 
 
Consider the programs shown in the equations 3 and 4, 
if we hope to crossover them at the elements 4 for VP1 
and 2 for VP2, see sub-trees enclosed for the dotted 
squares in the figures 2 and 3, we must construct 3 sub-
string for each program as is illustrated in the figure 7. 
 
Our partially recursive proposed methodology is: 
Extract non recursively from VP1 into S1a 

 The substring [0, crossover_point - 1] 
Extract recursively from VP1 into S1b 
 The sub-tree rooted at crossover_point 
Extract non recursively from VP1 into S1c 
 The ending string 
 
Repeat extracting from  VP2 into S2 
Swap S1b and S2b 
End 



 
The recursive procedure:  
recursiveExtraction( ) 
 copy sub-root into string 
 sub_treeExtraction( ) 
 sub_treeExtraction( ) 
 return 
sub_treeExtraction( ) 
 if (element ε T) 
  copy element into string 
  return 
 else 

copy sub-root into string 
  left_treeExtraction( ) 
  right_treeExtraction( ) 
  return 

 
As we can see in the figure 7 and  using the above 
methodology, 6 strings are extracted, two of them were 
extracted in a recursively way (the sub-trees that we 
must swap). After swapping them the crossover process 
is success full concluded. 
 
 
2.3 Mutation Methodology 
The methodology to get a right mutation may be derived 
from the crossover methodology. In fact, just one 
program and its mutation point are randomly chosen, 

then we apply the extraction from VP into S procedure to 
formulate the three strings (Sa, Sb and Sc): 
 
Extract non recursively from VP into Sa 

 The substring [0, mutation_point - 1]  
Extract recursively from VP into Sb 
 The sub-tree rooted at mutation_point 
Extract non recursively from VP into Sc 
 The ending string 
Generate a new program P using 
 The proposed generational methodology 
Concatenate Sa + P + Sc as the new program 
 Note: Sb is removed 
End 
 
The above methodology is able to use some of the 
procedures implemented in the proposed crossover 
methodology. The result is an accurate mutation. 

 

Fig. 8.- Set of desired points.
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3    Experimental Results 
We have used our proposed over all methodology in the 
Symbolic Regression field. Our goal is not to solve a big 
and hard problem but to prove that our string 
representation methodology is correct. This way, using 
the genetic process, we hope to get a program which fits 
the set of points showed in the figure 8. Figures 9, 10 
and 11 show three different programs that asses the set 
of points. 
 
As seen, program 1 is gotten at generations 11, program 
2 at generation 7 and program 3 at generations 6. Two of 
them have dissimilar sizes.  

Arithmetic notation: 
VP1 = X + 5 * X – 2 * X + 1  
VP2 = X * X –2 * 4  

Numeric postfix notation: 
 VP1 = -3 0 –1 –2 5 0 –3 –2 2 0 1    

VP2 = -1-2 0 0 –2 2 4 
Recursive extraction process: 
S1a=-3 0 –1, S1b=-2 5 0,   S1c=–3 –2 2 0 1 
 
 

S2a= -1,  S2b=-2 0 0    S3c=–2 2 4 

Resulting programs: 
 VP1 = -3 0 –1 –2 0 0 –3 –2 2 0 1    

VP2 = -1-2 5 0 –2 2 4 
 

Fig. 7.- Crossover process. 
 



 
Of course, we have considered the scalabilit y of our 
methodology into not only more complex problems 
related to Symbolic Regression but also as a tool during 
the Automatic Text Decomposition and Structuring 
process, our main interest area. 

 

 

 
4   Conclusion 
We have proposed a String Representation Methodology 
to generate not only syntactically valid Genetic 
Programs but also programs which remain syntactically 
valid, even after the applying of the crossover and the 
mutation operators. Such methodology is formed by: A 
generational methodology, a crossover methodology and 
a mutation methodology. 
 
Furthermore, we have showed the validness of the 
programs our methodology generates applying it in the 
Symbolic Regression area. 
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Program 44 from Generation 11 
 
Numeric postfix notation: 

<S2>  -1 0 –1 9.88 0 
Real postfix notation: 

<S2> sub( X , sub( 9.88 , X ) ) 
Real infix arithmetic notation: 
 <S2> X – (9.88 - X) 
simplifi ed arithmetic expression: 
 <S2> 2X + 9.88 
 
Fig. 9.- Generated program 44 of size 2 from 

generation 11. 
 

Program 34 of  Generation 7 
 
Numeric postfix notation: 

<S2>  -1 0 –1 9.69 0 
Real postfix notation: 

<S2> sub( X , sub( 9.69 , X ) ) 
Real infix arithmetic notation: 
 <S2> X – (9.69 - X) 
simplifi ed arithmetic expression: 
 <S2> 2X + 9.69 
 

Fig. 10.- Generated program 34 of size 2 
from generation 7 

 

Program 40 of Generation 6 
 
Numeric postfix notation: 
<S8> -1 –1 -1  0 –1 -8.19 -5.84 –1 -6.76 0 -3 –1 

–1 -3.43 -6.35 -3.70 -7.21 
Real postfix notation: 
<S8>  sub( sub( sub( X , sub( -8.19 , -5.84 ) ) , 

sub( -6.76 , X ) ) , add( sub( sub( -3.43 , 
 -6.35 ) , -3.70 ) , -7.21 ) ) 

Real infix arithmetic notation: 
<S8> { [X – (-8.19 – (-5.84))] –(-6.76 -X)} –  

{ [(-3.43-(-3.43-(-6.35)))-(-3.70)] + (-7.21)}  
Simpli fied arithmetic expression: 
<S8> 2X + 9.70 
 

Fig. 11.- Generated program 40 of size 8 
from generation 6. 

 
 
 
 
 
 
 
 
 
 
 


