A String Representation M ethodology to Generate Syntactically Valid

Genetic Programs

SOCRATES TORRES, MONICA LARRE, JOSE TORRES
Computer Science Department
ITESM Campus Cuernavaca
Paseo de laReforma 182A Lomas de’Cuernavaca62589.Cuernavaca Morelos.
MEXICO

Abstract: - The need to generate not only syntactically valid Genetic Programs but also programs which remain
syntactically valid, even after the applying of the crossover and the mutation operatorsis crucial for the good evolving of
the genetic programs. In this sense, programs shall be represented such way that constants, variables and operators
inherent to the problem be correctly represented during all the evolving process long. Actually, a string representation
does not get the above requirements due to the syntactically wrong programs produced by genetic operators. This paper
propose a String Representation M ethodol ogy to generate syntactically valid Genetic Programs. The Symbolic Regression

isthe areawhich is showed our representation.

Key-Words: - Genetic Programming, String Representation, Symbolic Regression.

1 Introduction

The Symbolic Regression tries to adjust an arithmetic
expression to fit as much as possible the whole set of
points that describe the behavior of a problem[1], the
figure 1 shows an example of both a desired and an
approximated curve. The more a curveis adjusted by the
Symbolic Regression to the desired curve the better
results are gotten when used this curve in order to
classify new and unknown inputs or to predict outputs
for unspecified inputs.

1.2
1 —e&—desired
0.8 A —l— approximated
> 0.6
0.4 -
0.2 1
0 —
— ™ n N~ (o] —
—
X

Fig. 1.- An example of both a desired
curve and a Symbolic Regression
approximated curve.

As is well known, at the beginning of a Genetic
Programming Process, a genetic population of programs
is randomly generated. A common problem is
introduced in each genetic program when the arithmetic
expression which describes the program possesses a non
valid syntactical structure. Equation 1 shows a valid
program while the equation 2 a non valid program.

VP= X+ 1% #+X-2/2X (1)
NVP = X +/ 3 -* 5X +-* 2

In this sense, we shall ensure that the method which
generates the programs is leaded for a valid String
Representation Methodology.

Now, suppose we have all of the program in the initial
population having a right structure, the following step is
to evaluate via the fitness function how good each
program is to solve the current problem, the Symbolic
Regression. Subsequently, in order to reproduce the
programs into the next population, we may apply one of
the Reproduction operators reported in most of the
scientific papers related to the Genetic Programming
area (e.g. Proportional Selection[2], Tournament[3]).
Using any of the above reproduction methods does not

introduce dteration in the structure of the program, so
they maintain their validness

However, applying the aossover operator may produce
syntadicdly nonvalid programs. Consider the foll owing
valid programs, see the syntax’s trees in the figures 2
and 3

VPL= X+ 5%X—-2*X+1 ©)
VP2= X* X-2*4 4

NN
TN

Fig. 2- Syntax’streefor the valid
program 1.

DN
/NN

Fig. 3- Syntax’streefor the valid
program 2.

If crossover positions chasen randamly are dement 4 for
VP1 and element 3 for VP2 the resulting programs are:

Before aossver:
VP1=X+5*X-2*X+1
VP2=X*X-=2*4

After crosver:
NVPL= X+5X-2*4 (5)
NVP2=X** X-2*X+1 (6)

As we can see thereis no operator between elements 3
and for in the equation 5and a doule operator between
elements 1 and 4 in the auation 6. Then, the whole
genetic process is affeded due to syntax’s defaults
within the programs.

Would be goodenouwgh if we consider just homogeneous
crosover points (e.g. operator-operator)? Consider now
a aqosver at the dement 4 in equation 3 and the
element 2 for equation 4, bah of them are operators.

Before crossover:
VP1=X+5*X-2*X+1
VP2=X*X-2*4

After crosove':

NVP3=X+5* X-2*4 (5)
NVP4A=X *X—-2*X+1 (6)

It happen to be that we have gotten two valid programs,
in fad they are. But our intentional crossover was not
fulfilled, olserve figures 2 and 3 where is $hown the
syntax’ s trees for bath the VP1 and the VP3. The dotted
squares shown in these figures ill ustrate two sub-trees,
which acarding to [4], the planned crosover was a
swapping between them. Said in ather words, off spring
programs doud preserve most of the information
contained in their parents [5].

Fig. 4- The Intentional and Red crossoversfor
program 1.

Now, if we consider the resulting programsin equations
5 and 6,Although they are structural valid are product of
avery different crosover, seefigures 4 and 5.Whil e the
intentional crosover is an exchange between sub-trees
enclosed for the doted squares the red crossover was a

big swapping between those “sub-trees’ in the shaded
viciniti es. The resulting trees (off spring trees) are mostly
the produwct of a randamly generated tree than a
lengthening of the parents’ information.

Fig. 5- The Intentional and Red
crosovers for program 2.

What happen if we onsent this kind d erroneous
crosover? What we ca foresee is a randam seach
processwhich will nat be @le to assessany goodresult.

The same problem is observed duing the gplying of
the Mutation operator, consider the program in equation
3 andaMutation at its element 4:
Before mutation:

VP1=X+5*X-2*10*X+ 1

After mutation:
NVP5=X+5XX-2*10*X+ 1 (7)

/_

. \+
A N
- >

Fig. 6- The Intentional and Red mutations for
program 1.

Equation 7 shows a non valid program with three
operands between elements 2 and 6. Even though we
may formulate a spedal Mutation operator (eg. If
element equals operator then randamly generate another
operator, else, generate ather a variable or a onstant),
the spedficaions for a mutation say that we have to
choese ay element (either operator or variable or
constant) from the program, eliminate de sub-treerooted
at this point and randamly generate another sub-tree[4].
The figure 6 shows a doted square with the red mutation
and a shaded vicinity with the desired ore.

The following sedions describe the proposed String
Representation along with the methoddogy to apply
both the dossover and the mutation operator in such
way that the structure of the programs remain corred.
The problem related to the Symbadlic Regressonis used
to show how this representation works.

2 Developed M ethodology

As a problem formulation, we can dedare that it is
required a string representation which na only produces
syntadicdly valid genetic programs but also that the
structure of the programs remains acarate amid the
genetic process

2.1.- Generational M ethodology

In order to adjust an arithmetic expresson to a desired
set of points, our representation must include two kind
of elements: aset NT of nonterminal elements (e.g. +, -
0, abs(), sin(), pow(), etc.) and a set T of terminal
elements (e.g. constants such as 4, 3and 9 or variables
suchasXorY).

Be X avedor of inpus {xi, X, ..., Xo} and Y a vedor of
desired outputs {yi, Va,...¥n}, See figwre 1, and
D={1,2...,9}. We may consider the foll owing sets NT =
{+, * -} and T = {X, D} with a numeric representation
of NT ={-3, -2, -1} and T={0, [1,9]} to buld any
program within the initial pod and propcse areaursive
methoddogy to generate syntadicdly valid genetic
programs; with the intention d avoid using parenthesis
in the program, we have daosen a postfix natation to
generate our programs.

programGeneration(Number OfNonTerminals)
non_terminalGeneration()
left_treeGeneration()

right_treeGeneration()
return
terminal Generation()
counter = 1
generate a random number from NT
return
left_treeGeneration()
if (counter < Number OfNonTerminals)
generate either a
random number fromNT or T
if (number_generated £ NT)
counter++
left_treeGeneration()
right_treeGeneration()
else
generate a random number from T
return
right_treeGeneration()
if(counter < Number OfNonTerminals)
generate a random number from NT
count++
left_treeGeneration()
right_treeGeneration()
return
if (counter = Number OfNonTerminals)
generate a random number from T

return
VPO [<&5>|-2 -3-3-3-2 37 3254
VPL [<&>|-2 0-1 2-3 5-1-2976
VP2 |<&>|-2 4-1-1-3 7-1 1000
VP3 |<&>[-1-2 0-3 0211308
VP4 [<&>|-1 -3-2 0-3-35 0600
VP5 [<&>|-1-1 2-3-3-31 1753
VP6 [<&5>|-2 9-1-2 0 -3-2 6546
VP7 |<&>|-2 -1 3-3 2 -35-1980
VP8 |<&>[-2-1-3-31-19 4020
VP9 [<&>|-1 -3-3-1-2 7 0 0013

Table 1- Initial pod of syntadicd valid
Genetic Programs.

The table 1 illustrates a set of ten syntadicd valid
programs generated via the aove methoddogy, eath
program has a size of 5 nonterminal elements (S5). The
correspondng set of red programs are shown in the
table 2.

As we car see every program begins with a non
terminal (binary operator) followed by a left sub-tree

and a right sub-tree Every left sub-tree begins either
with aterminal or a nonterminal element (depending on
the nonterminals courter), for each nontermina
element a reaursive cdl is dore to generate bath a left
sub-tree and aright sub-tree Every right sub-treemostly
begins with a nonterminal element depending on the
nortterminals courter or with aterminal element.

VPO | <S5> | mul(add(add(add(mul(3,7),3),2),5),4)

VP1 | <S5> | mul(X,sub(2,add(5,sub(mul(9,7),6))))
VP2 | <S5> | mul(4,sub(sub(add(7,sub(1,X)),X),X))
VP3| <S5> | sub(mul (X ,add(X,mul (1,sub(3,X)))),8)
VP4 | <S5> | sub(add(mul (X ,add(add(5,X),6)),X),X)
VP5 | <S5> | sub(sub(2,add(add(add(1,1),7),5)),3)

VP6 | <S5> | mul(9,sub(mul (X,add(mul(6,5),4)),6))
VP7 | <S5> | mul(sub(3,add(2,add(5,sub(9,8)))),X)
VP8 | <S5> | mul(sub(add(add(1,sub(9,4)),X),2),X)
VP9 | <S5> | sub(add(add(sub(mul(7,X),X),X),1),3)

Table 2.- Real formatted Initial pool.

At this point, it was shown that the proposed string
representation methodology generates a set of programs
having avalid full syntactical structure.

2.2 Crossover Methodology

During the crossover process, we have to choose
randomly both two programs and a crossover point for
each program. Next, We have to extract the sub-trees
rooted at the selected crossover pointsin order to swap
them.

Consider the programs shown in the equations 3 and 4,
if we hope to crossover them at the elements 4 for VP1
and 2 for VP2, see sub-trees enclosed for the dotted
squares in the figures 2 and 3, we must construct 3 sub-
string for each program asisillustrated in the figure 7.

Our partialy recursive proposed methodology is:
Extract non recursively fromVP1 into Sla

The substring [0, crossover _point - 1]
Extract recursively from VP into Slb

The sub-tree rooted at crossover _point
Extract non recursively from VP1 into Slc

The ending string

Repeat extracting from VP2 into &2
Swap Slb and S2b
End

Thereaursive procedure:
reaursiveExtraction()
copy sub-roat into string
sub_treeExtraction()
sub_treeExtraction()
return
sub_treeExtraction()
if (element £T)
copy dement into string
return
else
copy sub-roat into string
left_treeExtraction()
right_treeExtraction()
return

Arithmetic notation:
VP1=X+5*X-2*X+1
VP2=X*X-2*4

Numeric postfix notation:
VP1=-30-1-250-3-2201
VP2=-1-200-224

Reaursive efraction rocess

S1l&-30-1, Slb-25Q Sc=-3-2201
S2& -1, S2-200 SIX=2214

Resulting programs:
VP1=-30-1-200-3-2201
VP2=-1-250-224

Fig. 7- Crosver process

As we can seein the figure 7 and wing the éove
methoddogy, 6 strings are extraded, two of them were
extraded in a reaursively way (the sub-trees that we
must swap). After swapping them the cossover process
is successfull concluded.

2.3 Mutation Methodology

The methoddogy to get a right mutation may be derived
from the aossover methoddogy. In fad, just one
program and its mutation pant are randamly chosen,

then we gply the extractionfrom VP into Sprocedureto
formulate the threestrings (Sa, Skand <):

Extract non recursively fromVPinto Sa
The substring [0, mutation_pant - 1]
Extract recursively from VP into Sb
The sub-treerooted a mutation_pant
Extract non recursively fromVPinto &
The ending string
Generate a new program P using
The proposed generationa methoddogy
Concatenate Sa+ P + Sc asthe new program
Note: Sbis removed
End

The @ove methoddogy is able to use some of the
procedures implemented in the proposed crossover
methoddogy. The result is an acairate mutation.

—f(X) =2X + 10

15 +

10

5

x10?
> 0+
H — A - o o

_5 — « < 0O O N~ 0O

-10

15 L

X

Fig. 8.- Set of desired points.

3 Experimental Results

We have used ou propased over all methoddogy in the
Symbadlic Regressonfield. Our goal isnat to solve abig
and hard problem but to prove that our string
representation methoddogy is corred. This way, using
the genetic process we hope to get a program which fits
the set of points $howed in the figure 8. Figures 9, 10
and 11show threedifferent programs that asses the set
of points.

As e, program 1 is gotten at generations 11, program
2 at generation 7and program 3 at generations 6. Two of
them have dissmil ar sizes.

Of course, we have mnsidered the scdability of our
methoddogy into na only more mplex problems
related to Symbalic Regresgon bu also as atod during
the Automatic Text Deomposition and Structuring
process ou main interest area

Program 44 from Generation 11

Numeric postfix notation:
<S2 -10-19.880
Real postfix notation:
<S2 sub(X, sub(9.88 ,X))
Real infix arithmetic natation:
<S2> X—(9.88- X)
simplifi ed arithmetic expresson:
<S2 2X +9.88

Fig. 9- Generated program 44 d size 2 from
oeneration 11.

Program 34 of Generation 7

Numeric postfix notation:
<S2 -10-19.690
Real postfix notation:
<S2> sub(X, sub(9.69 ,X))
Real infix arithmetic notation:
<S2> X—(9.69- X)
simplifi ed arithmetic expresson:
<S2 2X +9.69

Fig. 10- Generated program 34 o size 2
from generation 7

4 Conclusion

We have proposed a String Representation Methoddogy
to generate nat only syntadicdly valid Genetic
Programs but also programs which remain syntadicdly
valid, even after the gplying of the aoswver and the
mutation operators. Such methoddogy is formed by: A
generational methoddogy, a aossover methoddogy and
amutation methoddogy.

Furthermore, we have showed the validness of the
programs our methoddogy generates applying it in the
Symboalic Regresson area

Program 40 of Generation 6

Numeric paostfix notation:

<S8> -1-1-1 0-1-8.19-5.84-1-6.76 0-3—1
-1-3.43-6.35-3.70-7.21

Red postfix natation:

<S8> sub(sub(sub(X, sub(-8.19 ,-5.84)),
sub(-6.76 ,X)), add(sub(sub(-3.43 ,
-6.35) ,-3.70) ,-7.21))

Red infix arithmetic natation:

<S8> {[X —(-8.19—(-5.89)] (-6.76-X)} —
{[(-3.43(-3.43(-6.39))-(-3.70] + (-7.21}

Simplified arithmetic expresson:

<S8>2X +9.70

Fig. 11- Generated program 40 o size 8
from generation 6.

References:

[1] X1. Hans Gerber, Simple Symbadlic Regresson
Using Genetic Programming,
http://alphard.ethz.ch/gerber/approx/default. html
|last visited: January 15", 2002.

[2] X2.D. E. Goldberg, Genetic Algorithmsin Seach,
Optimization and Madhine Leaning. Addison
Wesley, 1989.

[3] X3. Zbigniew Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs. Springer
Verlag, 1994.

[4] X4.J.R. Koza, F. H. B. lll, D. Andre, and M. A.
Kaene, Genetic Programming Il . Morgan
Kaufmann Publi shers, 1999.

[5] X5. Scott Brave, What is Genetic Programming?
http://www.genetic-
rogrammi ng.com/gpani matedtutorial .html
last visited: February 7, 2002.

