
A String Representation Methodology to Generate Syntactically Valid

Genetic Programs

SÓCRATES TORRES, MÓNICA LARRE, JOSÉ TORRES
Computer Science Department
ITESM Campus Cuernavaca.

Paseo de la Reforma 182-A Lomas de Cuernavaca 62589. Cuernavaca, Morelos.
MÉXICO

Abstract: - The need to generate not only syntactically valid Genetic Programs but also programs which remain
syntactically valid, even after the applying of the crossover and the mutation operators is crucial for the good evolving of
the genetic programs. In this sense, programs shall be represented such way that constants, variables and operators
inherent to the problem be correctly represented during all the evolving process long. Actually, a string representation
does not get the above requirements due to the syntactically wrong programs produced by genetic operators. This paper
propose a String Representation Methodology to generate syntactically valid Genetic Programs. The Symbolic Regression
is the area which is showed our representation.

Key-Words: - Genetic Programming, String Representation, Symbolic Regression.

1 Introduction
The Symbolic Regression tries to adjust an arithmetic
expression to fit as much as possible the whole set of
points that describe the behavior of a problem[1], the
figure 1 shows an example of both a desired and an
approximated curve. The more a curve is adjusted by the
Symbolic Regression to the desired curve the better
results are gotten when used this curve in order to
classify new and unknown inputs or to predict outputs
for unspecified inputs.

Fig. 1.- An example of both a desired
curve and a Symbolic Regression

approximated curve.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11

X

Y

desired

approximated

As is well known, at the beginning of a Genetic
Programming Process, a genetic population of programs
is randomly generated. A common problem is
introduced in each genetic program when the arithmetic
expression which describes the program possesses a non
valid syntactical structure. Equation 1 shows a valid
program while the equation 2 a non valid program.

VP = X + 1 * 4*X - 2/2*X (1)
NVP = X +/ 3 -* 5X +-* (2)

In this sense, we shall ensure that the method which
generates the programs is leaded for a valid String
Representation Methodology.

Now, suppose we have all of the program in the initial
population having a right structure, the following step is
to evaluate via the fitness function how good each
program is to solve the current problem, the Symbolic
Regression. Subsequently, in order to reproduce the
programs into the next population, we may apply one of
the Reproduction operators reported in most of the
scientific papers related to the Genetic Programming
area (e.g. Proportional Selection[2], Tournament[3]).
Using any of the above reproduction methods does not

introduce alteration in the structure of the program, so
they maintain their validness.

However, applying the crossover operator may produce
syntactically non valid programs. Consider the following
valid programs, see the syntax’s trees in the figures 2
and 3:

VP1 = X + 5 * X – 2* X + 1 (3)
VP2 = X * X –2 * 4 (4)

If crossover positions chosen randomly are element 4 for
VP1 and element 3 for VP2 the resulting programs are:

Before crossover:

VP1 = X + 5 * X – 2 * X + 1
VP2 = X * X –2 * 4

After crossover:
NVP1 = X + 5 X – 2 * 4 (5)
NVP2 = X * * X – 2 * X + 1 (6)

As we can see, there is no operator between elements 3
and for in the equation 5 and a double operator between
elements 1 and 4 in the equation 6. Then, the whole
genetic process is affected due to syntax’s defaults
within the programs.

Would be good enough if we consider just homogeneous
crossover points (e.g. operator-operator)? Consider now
a crossover at the element 4 in equation 3 and the
element 2 for equation 4, both of them are operators.

Before crossover:

VP1 = X + 5 * X – 2 * X + 1
VP2 = X * X –2 * 4

After crossover:
NVP3 = X + 5 * X –2 * 4 (5)
NVP4 = X * X – 2 * X + 1 (6)

It happen to be that we have gotten two valid programs,
in fact they are. But our intentional crossover was not
fulfill ed, observe figures 2 and 3 where is shown the
syntax’s trees for both the VP1 and the VP3. The dotted
squares shown in these figures ill ustrate two sub-trees,
which according to [4], the planned crossover was a
swapping between them. Said in other words, offspring
programs should preserve most of the information
contained in their parents [5].

Now, if we consider the resulting programs in equations
5 and 6, Although they are structural valid are product of
a very different crossover, see figures 4 and 5. While the
intentional crossover is an exchange between sub-trees
enclosed for the doted squares the real crossover was a

Fig. 2.- Syntax’s tree for the valid
 program 1.

*

X 5

+

X

*

X 2

-

+

1

*

X X 2

-

*

4

Fig. 3.- Syntax’s tree for the valid
 program 2.

Fig. 4.- The Intentional and Real crossovers for
program 1.

*

X 5

+

X

*

X 2

-

+

1

big swapping between those “sub-trees” in the shaded
vicinities. The resulting trees (offspring trees) are mostly
the product of a randomly generated tree than a
lengthening of the parents’ information.

What happen if we consent this kind of erroneous
crossover? What we can foresee is a random search
process which will not be able to assess any good result.

The same problem is observed during the applying of
the Mutation operator, consider the program in equation
3 and a Mutation at its element 4:

Before mutation:

VP1 = X + 5 * X – 2 * 10*X + 1
After mutation:

NVP5 = X + 5 X X – 2 * 10*X + 1 (7)

Equation 7 shows a non valid program with three
operands between elements 2 and 6. Even though we
may formulate a special Mutation operator (e.g. If
element equals operator then randomly generate another
operator, else, generate either a variable or a constant),
the specifications for a mutation say that we have to
choose any element (either operator or variable or
constant) from the program, eliminate de sub-tree rooted
at this point and randomly generate another sub-tree [4].
The figure 6 shows a doted square with the real mutation
and a shaded vicinity with the desired one.

The following sections describe the proposed String
Representation along with the methodology to apply
both the crossover and the mutation operator in such
way that the structure of the programs remain correct.
The problem related to the Symbolic Regression is used
to show how this representation works.

2 Developed Methodology
As a problem formulation, we can declare that it is
required a string representation which not only produces
syntactically valid genetic programs but also that the
structure of the programs remains accurate amid the
genetic process.

2.1.- Generational Methodology
In order to adjust an arithmetic expression to a desired
set of points, our representation must include two kind
of elements: a set NT of non terminal elements (e.g. +, -
,*,/, abs(), sin(), pow(), etc.) and a set T of terminal
elements (e.g. constants such as 4, 3 and 9 or variables
such as X or Y).

Be X a vector of inputs {x1, x2, …, xn} and Y a vector of
desired outputs {y1, y2,…,yn}, see figure 1, and
D={1,2,…,9}. We may consider the following sets NT =
{+, *, -} and T = {X, D} with a numeric representation
of NT ={ -3, -2, -1} and T={ 0, [1,9]} to build any
program within the initial pool and propose a recursive
methodology to generate syntactically valid genetic
programs; with the intention of avoid using parenthesis
in the program, we have chosen a postfix notation to
generate our programs:

programGeneration(NumberOfNonTerminals)
 non_terminalGeneration()
 left_treeGeneration()

*
+

X X 2

-

*

4

Fig. 5.- The Intentional and Real
crossovers for program 2.

*

X X

+

X

*
/

X 2

-

+

1

Fig. 6.- The Intentional and Real mutations for
program 1.

 right_treeGeneration()
 return
terminalGeneration()
 counter = 1
 generate a random number from NT
 return
left_treeGeneration()
 if (counter < NumberOfNonTerminals)

generate either a
 random number from NT or T
 if (number_generated ε NT)
 counter++
 left_treeGeneration()

 right_treeGeneration()
 else
 generate a random number from T
 return
right_treeGeneration()

 if(counter < NumberOfNonTerminals)
 generate a random number from NT
 count++
 left_treeGeneration()

 right_treeGeneration()
 return
if (counter = NumberOfNonTerminals)
 generate a random number from T
return

VP0 <S5> -2 -3 -3 -3 -2 3 7 3 2 5 4
VP1 <S5> -2 0 -1 2 -3 5 -1 -2 9 7 6
VP2 <S5> -2 4 -1 -1 -3 7 -1 1 0 0 0
VP3 <S5> -1 -2 0 -3 0 –2 1 –1 3 0 8
VP4 <S5> -1 -3 -2 0 -3 -3 5 0 6 0 0
VP5 <S5> -1 -1 2 -3 -3 -3 1 1 7 5 3
VP6 <S5> -2 9 -1 -2 0 -3 -2 6 5 4 6
VP7 <S5> -2 -1 3 -3 2 -3 5 -1 9 8 0
VP8 <S5> -2 -1 -3 -3 1 -1 9 4 0 2 0
VP9 <S5> -1 -3 -3 -1 -2 7 0 0 0 1 3

Table 1.- Initial pool of syntactical valid

Genetic Programs.

The table 1 ill ustrates a set of ten syntactical valid
programs generated via the above methodology, each
program has a size of 5 non-terminal elements (S5). The
corresponding set of real programs are shown in the
table 2.

As we can see, every program begins with a non-
terminal (binary operator) followed by a left sub-tree

and a right sub-tree. Every left sub-tree begins either
with a terminal or a non-terminal element (depending on
the non-terminals’ counter), for each non-terminal
element a recursive call i s done to generate both a left
sub-tree and a right sub-tree. Every right sub-tree mostly
begins with a non-terminal element depending on the
non-terminals’ counter or with a terminal element.

VP0 <S5> mul(add(add(add(mul(3,7),3),2),5),4)
VP1 <S5> mul(X,sub(2,add(5,sub(mul(9,7),6))))
VP2 <S5> mul(4,sub(sub(add(7,sub(1,X)),X),X))
VP3 <S5> sub(mul(X,add(X,mul(1,sub(3,X)))),8)
VP4 <S5> sub(add(mul(X,add(add(5,X),6)),X),X)
VP5 <S5> sub(sub(2,add(add(add(1,1),7),5)),3)
VP6 <S5> mul(9,sub(mul(X,add(mul(6,5),4)),6))
VP7 <S5> mul(sub(3,add(2,add(5,sub(9,8)))),X)
VP8 <S5> mul(sub(add(add(1,sub(9,4)),X),2),X)
VP9 <S5> sub(add(add(sub(mul(7,X),X),X),1),3)

Table 2.- Real formatted Initial pool.

At this point, it was shown that the proposed string
representation methodology generates a set of programs
having a valid full syntactical structure.

2.2 Crossover Methodology
During the crossover process, we have to choose
randomly both two programs and a crossover point for
each program. Next, We have to extract the sub-trees
rooted at the selected crossover points in order to swap
them.

Consider the programs shown in the equations 3 and 4,
if we hope to crossover them at the elements 4 for VP1
and 2 for VP2, see sub-trees enclosed for the dotted
squares in the figures 2 and 3, we must construct 3 sub-
string for each program as is illustrated in the figure 7.

Our partially recursive proposed methodology is:
Extract non recursively from VP1 into S1a

 The substring [0, crossover_point - 1]
Extract recursively from VP1 into S1b
 The sub-tree rooted at crossover_point
Extract non recursively from VP1 into S1c
 The ending string

Repeat extracting from VP2 into S2
Swap S1b and S2b
End

The recursive procedure:
recursiveExtraction()
 copy sub-root into string
 sub_treeExtraction()
 sub_treeExtraction()
 return
sub_treeExtraction()
 if (element ε T)
 copy element into string
 return
 else

copy sub-root into string
 left_treeExtraction()
 right_treeExtraction()
 return

As we can see in the figure 7 and using the above
methodology, 6 strings are extracted, two of them were
extracted in a recursively way (the sub-trees that we
must swap). After swapping them the crossover process
is success full concluded.

2.3 Mutation Methodology
The methodology to get a right mutation may be derived
from the crossover methodology. In fact, just one
program and its mutation point are randomly chosen,

then we apply the extraction from VP into S procedure to
formulate the three strings (Sa, Sb and Sc):

Extract non recursively from VP into Sa

 The substring [0, mutation_point - 1]
Extract recursively from VP into Sb
 The sub-tree rooted at mutation_point
Extract non recursively from VP into Sc
 The ending string
Generate a new program P using
 The proposed generational methodology
Concatenate Sa + P + Sc as the new program
 Note: Sb is removed
End

The above methodology is able to use some of the
procedures implemented in the proposed crossover
methodology. The result is an accurate mutation.

Fig. 8.- Set of desired points.

-15

-10

-5

0

5

10

15

1 11 21 31 41 51 61 71 81 91
X

Y

f(X) = 2X + 10

x 10-1

3 Experimental Results
We have used our proposed over all methodology in the
Symbolic Regression field. Our goal is not to solve a big
and hard problem but to prove that our string
representation methodology is correct. This way, using
the genetic process, we hope to get a program which fits
the set of points showed in the figure 8. Figures 9, 10
and 11 show three different programs that asses the set
of points.

As seen, program 1 is gotten at generations 11, program
2 at generation 7 and program 3 at generations 6. Two of
them have dissimilar sizes.

Arithmetic notation:
VP1 = X + 5 * X – 2 * X + 1
VP2 = X * X –2 * 4

Numeric postfix notation:
 VP1 = -3 0 –1 –2 5 0 –3 –2 2 0 1

VP2 = -1-2 0 0 –2 2 4
Recursive extraction process:
S1a=-3 0 –1, S1b=-2 5 0, S1c=–3 –2 2 0 1

S2a= -1, S2b=-2 0 0 S3c=–2 2 4

Resulting programs:
 VP1 = -3 0 –1 –2 0 0 –3 –2 2 0 1

VP2 = -1-2 5 0 –2 2 4

Fig. 7.- Crossover process.

Of course, we have considered the scalabilit y of our
methodology into not only more complex problems
related to Symbolic Regression but also as a tool during
the Automatic Text Decomposition and Structuring
process, our main interest area.

4 Conclusion
We have proposed a String Representation Methodology
to generate not only syntactically valid Genetic
Programs but also programs which remain syntactically
valid, even after the applying of the crossover and the
mutation operators. Such methodology is formed by: A
generational methodology, a crossover methodology and
a mutation methodology.

Furthermore, we have showed the validness of the
programs our methodology generates applying it in the
Symbolic Regression area.

References:
[1] X1. Hans Gerber, Simple Symbolic Regression

Using Genetic Programming,
http://alphard.ethz.ch/gerber/approx/default.html
last visited: January 15th, 2002.

[2] X2. D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning. Addison
Wesley, 1989.

[3] X3. Zbigniew Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs. Springer
Verlag , 1994.

[4] X4. J. R. Koza, F. H. B. III , D. Andre, and M. A.
Kaene, Genetic Programming III . Morgan
Kaufmann Publishers, 1999.

[5] X5. Scott Brave, What is Genetic Programming?
http://www.genetic-
rogramming.com/gpanimatedtutorial.html
last visited: February 7th, 2002.

Program 44 from Generation 11

Numeric postfix notation:

<S2> -1 0 –1 9.88 0
Real postfix notation:

<S2> sub(X , sub(9.88 , X))
Real infix arithmetic notation:
 <S2> X – (9.88 - X)
simplifi ed arithmetic expression:
 <S2> 2X + 9.88

Fig. 9.- Generated program 44 of size 2 from

generation 11.

Program 34 of Generation 7

Numeric postfix notation:

<S2> -1 0 –1 9.69 0
Real postfix notation:

<S2> sub(X , sub(9.69 , X))
Real infix arithmetic notation:
 <S2> X – (9.69 - X)
simplifi ed arithmetic expression:
 <S2> 2X + 9.69

Fig. 10.- Generated program 34 of size 2
from generation 7

Program 40 of Generation 6

Numeric postfix notation:
<S8> -1 –1 -1 0 –1 -8.19 -5.84 –1 -6.76 0 -3 –1

–1 -3.43 -6.35 -3.70 -7.21
Real postfix notation:
<S8> sub(sub(sub(X , sub(-8.19 , -5.84)) ,

sub(-6.76 , X)) , add(sub(sub(-3.43 ,
 -6.35) , -3.70) , -7.21))

Real infix arithmetic notation:
<S8> { [X – (-8.19 – (-5.84))] –(-6.76 -X)} –

{ [(-3.43-(-3.43-(-6.35)))-(-3.70)] + (-7.21)}
Simpli fied arithmetic expression:
<S8> 2X + 9.70

Fig. 11.- Generated program 40 of size 8
from generation 6.

