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Abstract: A new position controller with gravity compensation for robot manipulators
in joint space is proposed in this paper. The goal of position control problem for global
asymptotically stability is achieved by using Lyapunov ’s direct method and LaSalle ’s
invariance principle over the full non—linear mutivariable robot closed—loop system. In
adition, this paper also presents experimental results on a three — degrees—of— freedom

direct drive robot.
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1 Introduction

The nonlinear and multivariable phenomena
present on robot manipulators are well known
and not are fully characterized problems. Those
nonlinearities present on the robot dynamics can
lower controller performance and lead to mal-
function. The saturation phenomenon is a com-
mon problem present when the amplitude of the
control law overruns the actuator linear range;
as a result, the torque supplied by the actuator
will differ from the control law.

Besides these problems, current industrial ma-
nipulators are equipped with regulators such as
the proportional derivative (PD) or proportional
integral derivative (PID); these controllers are ef-
fective at controlling position [1]. However, they
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are not robust against the saturation problem —
because they assume that the actuator is always
able to supply the requested torque. Further-
more, the static friction present in the physical
system may hamper the controller performance.

The practical interest of developing a new con-
trol algorithm with global asymptotic stability
of the closed-loop system is our main motivation.
In addition, the new saturated controller is capa-
ble of improving the performance of the TANH
controller[2 ] and bypass the actuator saturation
problem. This new controller is based on the
energy shaping methodology[3] and consists of
three parts: a trigonometric saturated type func-
tion for the proportional part of the controller, a
saturated derivative term and gravitational com-
pensation.

This paper is organized as follows. section 2
a brief exposition of the robot dynamics and its
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useful properties. In section 3, the new controller
is presented along with its stability analysis. Sec-
tion 4, summarizes the main components of the
experimental set—up. The experimental results
on a direct drive arm are in section 5. Finally, a
conclusion is offer in section 6.

2 Robot Dynamics

The dynamics of a serial n-link rigid can be writ-
ten as[4]:

M (q)
··
q +C

µ
q,
·
q
¶ ·
q +g (q) = τ (1)

where q is the n x 1 vector of joint displacements,
·
q is the n x 1 vector of joint velocities, τ is the
n x 1 vector of input torques, M (q) is the n x
n symmetric positive definite manipulator iner-

tia matrix, C

µ
q,
·
q
¶
is the n x n matrix of cen-

tripetal and Coriolis torques, and g (q) is the n x
1 vector of gravitational torques obtained as the
gradient of the robot potential energy U (q) due
to gravity:

g (q) =
∂U (q)
∂q

(2)

We assume that the robot links are joined to-
gether with revolute joints. Although the equa-
tion of motion (1) is complex, it has several fun-
damental properties which can be exploited to
facilitate the design of control systems.

Property 1. The matrix C

µ
q,
·
q
¶
and the time

derivate
·
M (q) of the inertia matrix satisfy:

·
q
·
1

2

·
M (q) −C

µ
q,
·
q
¶ ¸ ·

q= 0,∀q, ·q∈ Rn. (3)

Figure 1: Arctan function.

3 Trigonometric Satured Con-
troller

Based on the energy shaping metodology, the
stability analysis of the new controller is shown
here. This new controller has a saturated struc-
ture with gravity compensation and it is given
by: 1) Saturation-proportional term based on
the arctangent function, 2) Saturation-derivative
term which is also based on the arctangent func-
tion and 3) The gravity compensation term. The
equation for the new controller is:

τ = Kp arctan (eq)−Kv arctanµ ·q¶+ g (q) (4)

where eqi = qdi − qi, i = 1...n denote position
errors, qdi are desired constant joint positions,
Kp ∈ Rnxn is a diagonal positive definite pro-
portional gain matrix, Kv ∈ Rnxn is a positive
definite matrix derivative gain matrix.

The position control problem can be solved by:
Selecting the design matrices Kp,Kv in such a
way that the position error eq = qd − q dimin-
ishes asymptotically towards a zero value, i.e.
limt→∞ eq (t) = 0 and keeping the applied torques
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inside the prescribed limits of the robot actua-
tors. To solve the problem, the following propo-
sition is formulated:

Proposition. Considering the robot dynamic
model (1) together with the control law (3),
then the closed-loop system is globally asymp-
totically stable and the desired position —where
limt→∞ q (t) = qd — is achieved.

Proof. Consider the following closed—loop ecu-
ation.

d

dt

" eq
·
q

#
=

"
− ·
q

M−1 (q) [Kp arctan (eq)] (5)

−Kv arctan

µ ·
q
¶
−C

µ
q,
·
q
¶ 

Where equation (5) is an autonomous differential
equation and the state space origin is its unique
equilibrium point.

The stability analysis is carried out by Lya-
punov’s direct method and for that purpose, the
following Lyapunov function candidate is pro-
posed:

V

µeq, ·q¶ =
1

2

·
q
T
M (q)

·
q +

nX
i=1

kpi[eqi arctan (eqi)
−1
2
ln
³
1 + eq2i ´] (6)

Lyapunov’s direct method requires that any
function candidate should be positive definite, in
this case the first term is positive definite respect

to
·
q since it is a cuadratic form, with a positive

definite matrix M (q) associated. The term as-
sociated to eq is positive definite since all kpi are
positive values; inspecting Fig(2).

Figure 2: eq arctan (eq)− 1
2 ln

¡
1 + eq2¢

The Lyapunov function candidate is then time—
derivated (6) along the trayectories of the closed-
loop equation (5). After some algebra using
property 1, the time derivate can the written as
follows:

·
V

µeq, ·q¶ = − ·
q
T
Kv arctan

µ ·
q
¶
≤ 0 (7)

The time derivate of the Lyapunov function can-
didate is a globally negative semidefined func-
tion and therefore only stability of the point of
equilibrium is concluded. To ensure asymptotic
stability, LaSalle’s theorem is applied (7).

Ω =

(Ã eq
·
q

!
∈ R2n : ·V

µeq, ·q¶ = 0) (8)

=

½eq ∈ Rn, ·q= 0 ∈ Rn¾

Since the unique invariant eq = 0, ·q= 0, all solu-
tions of (5) will globally asymptotically converge
to Ω as t→∞.
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Figure 3: Experimental Robot.

4 Experimental Set-Up

The experiments are carried out on a purpose—
built and designed ”experimental system for
research robot control algorithms” at The
Benemérita Universidad Autónoma de Puebla.
The robot is a direct drive manipulator with
three degrees of freedom moving in three-
dimensional space, as shown in Fig(3). The ex-
perimental robot consist of links made of 6061
aluminum, actuated by brushless direct drive
servo actuators from Parker Compumotor. Some
advantages of this type of robot are: capabil-
ity of driving the joints without gear reduction,
freedom of backlash and significantly lower joint
friction compared to actuators with gear drives.
The motors used in the robot are listed in Table
I.

Table I

Link Model Torque[Nm] p/rev

Base DM1050A 50 1024000

Shoulder DM1150A 150 1024000

Elbow DM1115B 15 655360

Position information is obtained from incremen-
tal encoders located in the motors. The standard

backwards difference algorithm applied to the
joint position measurements generates the veloc-
ity signals. In addition to position sensors and
motor drivers, it also includes a motion control
board manufactured by Precision MicroDynam-
ics Inc., used to obtain the joint position from the
encoders. The control algorithm runs on a Pen-
tium II (333Mhz) host computer. Knowledge of
the robot’s gravitational vector is the only nec-
essary prerequisite for system implementation.

5 Experimental Results

The experimental evaluation of the controller
must support the theoretical developments.
Therefore, an extensive set of experiments were
carried out between the ARCTAN controller and
the TANH controller. During the experimental
test, no friction compensation was modeled on
the controller. The two implemented controllers
are shown below; to distinguish them, an inde-
tification subindex is added. The new controller
equation is given by :

τarc = Kparc arctan (eqarc)−Kvarc arctanµ ·qarc¶
+g (q)

The TANH controller is given by[2]:

τhip = Kphip tanh (eqhip)−Kvhip tanhµ ·qhip¶
+g (q)

The experimental robot gravitional torque vector
is defined as follows:

g (q) =

 0
38.45 sin (q2) + 1.82 sin (q2 + q3)

1.82 sin (q2 + q3)
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In both cases, the proportional parts are satu-
rated functions; for this type of functions, the
gains can be selected acording to |τ | ≤ τmax as
shown in Table I. In the other hand, both con-
trollers share same desired joint position for the
base, shoulder and elbow:

qd =

 90
45
45


all the values are in degrees with initial condi-
tions zero for the robot position and velocity.
The following proportional and derivative tun-
ning gains were selected for each controller:

Kparc =

 22.293 0 0
0 82.8025 0
0 0 6.3694


Kphip =

 35 0 0
0 130 0
0 0 10



Kvarc =

 22.293 0 0
0 63.6943 0
0 0 6.3694


Kvhip =

 35 0 0
0 100 0
0 0 10


The units for the proportional gains are
Nm/degree and the units for the derivative
gains are Nm—degree/s. The experimental re-
sults for the position error and applied torques
for the ARCTAN controller are shown in Fig(4)
and for TANH controller Fig(5). Notice that the
applied torques are within the actuartor limits.
The transient state in both cases is breaf but,
in the ARCTAN controler the transient state is
fast and smooth. The goal of position control
is achived by reaching a small neighborhood of
zero position error.

Figure 4: ARCTAN controller.

Figure 5: TANH controller.

5.1 Performance Indicators

The performance evaluation is solved implement-
ing the scalar value L2 as an objetive numerical
measure for te entire error curve. In other words,
the L2 |eq| marks the compromise between veloc-
ity and presition of the moviment performed by
the robot. The L2 |eq| norm measures the root—
mean—square (RMS) of the position error and its
given by the following formula:

L2 =

vuuut 1

t− t0

tZ
to

keqk2 dt
where t, t0 ∈ R are the initial and final time,
repectively. A smaller L2 |eq| represents smaller
position error, a fast transient state and a bet-
ter performance of the evaluated controller. The
comparison graph of the controller is shown in
fig(6). As a result, the ARCTAN controller has a
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lower L2 norm wich means a better performance;
considerating that final value of L2 |eq| norm is an
average of five experimental runs under the same
operatin conditions.
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Figure 6: Performance Indices

6 Conclusions

In this paper, we have a new controller of posi-
tion for robot manipulators. This controller is
supported by a rigurous stability analysis. The
proposed controller can resolve the saturating
problem of the servo—motors. Experimental re-
sults on a tree degree—of—freedom direct drive
robot manipulator have shown the asymptotic
stability and performance. In our opinion, on the
basis of the experimental results we cautiously
conclude that, the new controller has a better
performance than the TANH controller.
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