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Abstract: - A new efficient march test algorithm for detecting 3-coupling faults in Random Access Memories is 
given in this paper. To reduce the length of the test only the 3-coupling faults between physically adjacent 
memory cells have been considered. The proposed test algorithm needs 34N operations. Simulation results with 
regard to the coupling fault coverage of the march tests, obtained based on a fault injection mechanism, are also 
presented in this paper. This work improves the results presented in [1] where the same problem is dealt with 
and a march test with 38N operations is given. 
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1 Introduction 
Rapid developments in semiconductor technology 
resulted in continuing growth of larger and denser 
random access memories (RAM) on a single chip. 
More time is required to test memories because of 
their increasing size. On the other hand, as a result of 
the increased cell density the nature of the failure 
mode becomes more complex and subtle [2].  
 Memory test procedures are constrained by two 
conflicting requirements: 
a)  to detect a wide variety of complex faults;  
b) to reduce the number of memory operations in 
order to allow the testing of large memory size to be 
carried out in an acceptable period of time.  
 Efficient test algorithms for detecting stuck-at 
faults and 2-coupling faults have been proposed, see 
for example Refs. [2-5]. All of these are march 
algorithms with a reduced number of operations.  
 For 3-coupling faults, a memory test that requires 
N+36Nlog2N operations is given by Nair, Thatte and 
Abraham [3]. Papachristou and Sahgal proposed in 
[4] a new algorithm with the same ability to detect 3-
coupling faults but with only 37N+24Nlog2N 
operations (PS(B) in this article). Unfortunately, for 
the memory chips currently available, these tests take 
a long time to perform. For example, assuming a 
cycle time of 100 ns, PS(B) takes about 4 min to test 
a 4Mb memory chip and 1h 14 min to test a 64-Mb 
memory chip. This time is not acceptable in many 
cases, such as the on-line testing. Both memory tests, 
are lengthy because the authors have assumed that 
the three coupled cells can be anywhere in the 

memory. This paper proposes a new march test for 3-
coupling faults with an acceptable compromise 
between the fault detection ability and the length of 
the test. Thus only the 3-coupling faults that affect 
physically adjacent memory cells are considered.  
 This work improves the results presented in [1] 
where the same problem was treated. 
 
 
2 Memory Fault Model 
The fault models used in this paper have been 
formalised by Nair, Thatte and Abraham [3] and 
refined later by Papachristou and Sahgal [4]. At the 
same time some definitions and fault models have 
been draw from Suk and Reddy [5]. We have also 
adopted notations given by van de Goor [2].  
 This paper is focused on very difficult to detect 
faults such as 2-coupling and 3-coupling faults. For a 
group of coupled cells transition and/or state 
coupling faults  may exist.  
1) Transition coupling faults 
a) 2-Coupling Faults A write operation that affects a 
0→1 or a 1→0 transition into cell j changes the state 
of another memory cell i, independently of the 
contents of the other cells. This does not necessarily 
imply that a state transition in cell i changes the 
contents of cell  j [3]. Cell i is called the coupled cell 
and cell j is called the coupling cell. We can say that 
cell j has an active influence on cell i.  
b) 3-Coupling Faults. For a set of three coupled 
cells, a transition in one cell causes the state of 
another cell in the set to change from 0 to 1 or from 



1 to 0, when the third remaining cell has a fixed 
state.  
2) State coupling faults  
A state-coupling fault occurs when one or more cells 
in a group of ν-coupled cells (ν ≥2) fail to undergo a 
0→1 or a 1→0 transition when the complement of 
the contents of the memory cell is written into the 
cell [2]. This type of fault depends on the states of 
the remaining ν-1 cells in the group. In this case, we 
can say that the remaining ν-1 cells in the group 
have a passive influence on the coupled cell.  When 
cell i is a coupled cell the fault is called i-state 
coupling fault. 
 In memory, one or more groups of coupled cells 
may exist. When the pairs of groups of coupled cells 
are disjoint the model is called restricted coupling 
faults. As in Refs. [3,4] we considered only this 
restricted model. 
 The interacting coupling faults are also accepted 
in this model [5]. Informally, the significance of two 
interacting faults is that their combined effects may 
cancel each other out. 
 In this paper only the physically adjacent cells 
have been considered. Two cells are physically 
adjacent if they have a border or even a corner in 
common. Fig. 1 shows all the four distinct patterns 
(P1, P2, P3, P4) for a group S=(i,j,k) of three adjacent 
cells.  
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Fig. 1 Patterns for three physically adjacent cells 

 
 
3 Preliminaries 
Definition 1. For every memory cell in RAM three 
possible states can be considered [5]: 
• Internal state is the actual content of the memory 

cell. 
• Apparent state is the result of a read operation of a 

memory cell. 
• Expected state is the expected content of a cell 

after one or more write operations. 
Definition 2. Faults are detected if and only if one or 
more differences between the expected states and the 
apparent states of the cells occur during the test [5]. 

Definition 3. A forced transition is defined in [3] as 
one that is initiated by the testing algorithm by 
writing into a cell (of course, this may cause 
transitions in other cells because of coupling). 

The following notations to describe operations on 
RAM’s are used in this paper: 
• R the read operation on a cell;  
• Wx the operation of writing x into a cell, x∈{0,1}; 
• Wc the operation of writing the complement of the 

previous apparent or expected state of a cell;  
• ↑i the operation of writing 1 into cell i when the 

previous apparent or expected state of cell i was 0; 
• ↓i the operation of writing 0 into cell i when the 

previous apparent or expected state of cell i was 1. 
Consider S a group of v cells. To describe a failed 
transition in S we use the notation given by van de 
Goor [2]. Thus, a vector F with v+1 elements shows 
the conditions to sensitise the fault (the initial state 
of group S and the forced transition) and the result of 
fault sensitising (the change of state of the coupled 
cell specified in context, in the format: good 
value/faulty value). For example, for a group of cells 
S=(i,j,k): 
• if j is a coupled cell, vector F=<0,↑,0;1/0> 

describes a state coupling fault in which the 
transition ↑j has no effect when cell i and k are in 
the state 0. 

• if k is a coupled cell, vector F=<↑,φ,0;0/1> 
describes a transition coupling fault in which the 
forced transition ↑i changes the state of cell k  
from 0 to 1.  

Definition 4. In this paper a fault is called simple 
fault if only one vector F is necessary for description 
the fault behaviour. If at least two vectors are 
necessary for a complete description the fault is 
called  a complex fault. 

Any complex fault can be modelled as a set of 
distinct simple faults simultaneously present in the 
memory. An interacting fault is a complex fault 
which comprises two or more (even number) simple 
faults with contrary influence on the same cell 
[1],[7]. Examples of complex fault: 
• Take an i→j coupling fault in which the transition 

↑i changes the state of cell j from 0 to 1 and the 
transition ↓i from 1 to 0. This complex interacting 
fault can be modelled by two vectors: 

    F1=<↑,0,φ;0/1> and F2 = <↓,1,φ;1/0>. 
• Take a linked coupling fault with cell j a coupled 

cell. Both transition ↑i and ↑k change the state of 
cell j from 0 to 1. This fault can be modelled by                 
F1=<↑,0,φ;0/1> and F2 =<φ,0,↑;0/1>. This is not 
an interacting fault. 



 To detect a fault in a memory under testing two 
conditions are needed: 
• to activate (to sensitise) the fault by a proper 

forced transition; 
• to observe the fault by reading the changed value 

of the cell affected by the fault. 
Remark 1. Generally, complex faults are easier to 
detect than simple faults because there are more 
input vectors for which complex faults are activated. 
Thus, if a test procedure detects any simple fault, 
moreover, it detects all complex non-interacting 
faults.  
Assertion 1. The next three conditions are necessary 
and sufficient for a test to detect any simple fault in a 
group of coupled cells: 
Condition 1. For a group of cells S the test must 
force all the possible cell transitions. 
Condition 2. After a forced transition into a cell the 
test must read the cell to check if the state has 
changed before to force another transition into the 
cell. 
Condition 3. Every cell must be read first before a 
forced transition, in order to check if the state has 
been changed by a transition in a coupled cell. 
Remark 2. If for a group of cells S all the possible 
transitions are forced during the test (condition 1 is 
satisfied) then all the possible faults that affect the 
cells in S are activated. Conditions 2 and 3 are 
needed to observe the memory faults. 
Definition 5. A march element (M) is a finite 
sequence of operations applied to every cell in the 
memory in either one of two orders, increasing 
address order from address zero (⇑) or decreasing 
address order from N-1 (⇓) [2]. Symbol c is used 
when the address order does not matter. 
Definition 6. A march test is a finite sequence with n 
march elements T = <M1; M2;  ...  ;Mn-1; Mn>. 
 The march test may also comprise one or more 
sequences to initialise the memory. 
 
 
4 March Tests Currently Used 
The best-known march test algorithms currently used 
to detect coupling faults are presented bellow. 
1) The march algorithm (March C) with 10N 
operations presented in [2]. 
2) The march algorithm (March B) with 16N 
operations given by Suk and Reddy [5]. 
3) The march algorithm (March G) with 24N 
operations given by van de Goor [2]. 
4) The march test with 30N operations given by Nair, 
Thatte and Abraham [3] (NTA(A) in this paper). 

5) The march test with 37N operations given by 
Papachristou and Sahgal [4] (PS(A) in this paper). 

Experimental results regarding to the 2-coupling 
and 3-coupling fault coverage of these march tests 
are presented in table 1 and table 2, respectively. In 
order to simulate a permanent fault into the memory 
under test we have used a software fault injection 
mechanism based on TRAP microprocessor interrupt.
 For every possible transition in a group of coupled 
cells S we have checked two kind of faults: 
• state coupling faults - the forced transition does 

not change the state of the addressed cell; 

• transition coupling faults - the forced transition 
changes the state of the addressed cell but, at the 
same time, it changes the state of another coupled 
cell in group S. 

 
Table 1  Simple 2-coupling fault coverage (%) 

March C 
(10N) 

March B 
(17N) 

March G 
(24N) 

NTA(A) 
(30N) 

PS(A) 
(37N) 

81.25 81.25  100 100  100  

 
For 3-coupling faults four groups of cells have been 
considered, one for each pattern Pi, i∈{1,2,3,4} (see 
Fig.1). For each group, all possible simple 3-
coupling faults were injected: 24 state coupling 
faults and 48 transition coupling faults. In total, for 
all groups of cells, we have checked 288 simple 
faults.  
 

Table 2  Simple 3-coupling fault coverage (%) 

March C 
(10N) 

March B 
(17N) 

March G 
(24N) 

NTA(A) 
(30N) 

PS(A) 
(37N) 

41.67  47.22  62.50  63.89  63.89  

 
 All these march tests have good fault coverage for 
2-coupling faults but, as we can see in table 2, have 
low fault coverage for 3-coupling faults. For 
example, the best of them, NTA(A) and PS(A), cover 
completely 2-coupling faults but only 63.89% of 
simple 3-coupling faults.  
 A new efficient march test with 38N operations 
able to detect all simple 3-coupling faults is given in 
[1], where the same memory fault model has been 
considered. In section 5 another march test to cover 
restricted 3-coupling faults which affect physically 
adjacent cells is presented. Comparing with the test 
presented in [1] this new march test needs only 34N 
operations and is more adequate for a built-in self-
testing implementation [8]. 



5 A New March Test Algorithm 
In this section a new march test (MT) with 34N 
operations is presented. This test procedure uses six 
different patterns (data background) for memory 
initialisation. 
MT =<I1;⇑(RWcRWc);c(R); I2;⇑(RWcRWc);c(R);     
           I3;⇑(RWcRWc);c(R); I4;⇑(RWcRWc);c(R);  
           I5;⇑(RWcRWc);c(R); I6;⇑(RWcRWc);c(R)> 
where I1, I2, I3, I4, I5 and I6 are sequences for memory  

initialisation (Fig.2):  
• I1 and I3 initialises any cell with 0 and 1, 

respectively (solid data background);  
• I2 initialises the odd columns with 0 and the even 

columns with 1, and I4 vice versa (column-stripe 
data background);  

• I5 initialises the odd rows with 0 and the even 
rows with 1, and I6 vice versa (row-stripe data 
background). 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I1 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

I3 
 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 
 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 

I2 

 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 

I4
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

I5 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I6 
 

Fig. 2  Data background used by MT and the possible initial states for all distinct patterns 
 
Remark 3.  Every march element RWcRWc applied 
to a memory cell leaves the cell into the same state 
because the cell is switched twice. Consequently, a 
march sequence leaves the memory into the same 
state if no fault has occurred.  
Assertion 2.  

The march test MT detects all simple 3-coupling 
faults which affect physically adjacent cells. 
Demonstration  

Consider a group of three physically adjacent cells 

S=(i,j,k) with addresses in increasing order (i<j<k).  
We have to check that MT activates and observes 

any simple fault in group of cells S.  

1. MT activates any fault in group of cells S 

To activate any fault in group S the test program 
must force all possible transitions in this group 
(assertion 1 in section 3). For a group of three cells 
24 distinct transitions exist. Fig.3 shows the Eulerian 
graph of states for a group of three cells.   

Every group of three physically adjacent cells 



corresponds with one of the patterns P1, P2, P3 or P4 
(see Fig.1). Consequently, we consider a group of 
cells for each pattern P1, P2, P3 and P4 and  
demonstrate that MT covers the graph of states. 

 

 
                                    010                                        110      
  
 
 
              000                                         100 
 
 
 
                                    011                                        111 
 
 
 
               001                                         101 
 

Fig. 3 The Eulerian graph of states for a group of 
cells S=(i,j,k) 

 
We can see that two adjacent nodes (states) in the 

graph have only one bit changed and two non-
adjacent nodes have at least two bits changed.  

A march sequence in MT performs six different 
transitions in group of cells S. In the Eulerian graph 
three adjacent nodes are visited (going and coming 
back) and, finally, the group of cells returns to the 
initial state (before the sequence started). For 
example, the first sequence I1;⇑(RWcRWc) performs 
the transitions marked with solid lines in the graph. 
 As highlighted in Fig.2 the initialisation sequences 
I1, I2, I3, I4, I5 and I6 ensure in a group of cells S the 
states presented in Table 3. Of course, these initial 
states are specific for each pattern. 
 

Table 3 The initial states for a group S 
 

 I1 I3 I2  and  I4 I5 and  I6 

P1 000 111 101, 010 110, 001 
P2 000 111 110, 001 011, 100 
P3 000 111 101, 010 100, 011 
P4 000 111 011, 100 001, 110 

 
Table 4 The missing initial states for a group S 

 

Pattern States 

P1 011, 100 

P2 010, 101 

P3 001, 110 

P4 010, 101 

For every group of cells only two initial states can 
not be obtained by the sequences I1, I2, I3, I4, I5 and 
I6. Table 4 gives the initial states which are missing.  
 For all patterns, the two missing initial states are 
complementary states as all bits are changed. In a 
geometrical interpretation (see Fig.3), the associated 
nodes in the graph of states are not in the same plane. 
In these conditions, it can easily check that the 
Eulerian graph of states is completely covered, in all 
the four cases. In other words, MT forces all possible 
transitions in every group of three physically 
adjacent cells and, consequently, is able to activate 
any fault in a group of coupled cells. 

2.  MT observes any simple fault activated in group S 

MT repeats the pair of march sequences (RWcRWc) 
and (R) six times. Thus, for every memory cell a 
write operation (Wc) is preceded and succeeded by a 
read operation (R). Consequently, condition 2 and 3 
previously defined in section 3 (assertion 1) are 
satisfied. □ 
 Because MT is able to detect any simple restricted 
3-coupling fault it also covers the complex non-
interacting 3-coupling faults (remark 1 in section 3). 
In addition, MT is also able to detect the interacting 
coupling faults, but this complex problem can not be 
treated here.  
 The simulation result confirms that MT detects all 
simple 3-coupling faults.  
 
 
6 Conclusions 

This paper presents a new efficient march test 
algorithm for coupling faults in random access 
memories. Only the coupling faults between 
physically adjacent cells have been considered.  

MT needs 34N operations and covers the 3-
coupling fault model. We demonstrated analytically 
that MT is able to detect all simple 3-coupling faults 
using an Eulerian graph model.  

Experimental results with regard to the coupling 
fault coverage of the best-known march tests are also 
given in this paper.   
 Taking into account the 3-coupling fault coverage,  
MT is better than all the march tests currently used.  
 Comparing with the non-march test PS(B), also 
especially designed to cover 3-coupling faults, MT is 
considerable reduced. For example, MT takes 14.2s 
and PS(B) about 4 min to test a 4Mb memory chip if 
we assume a cycle time of 100 ns. In other words, 
for testing a 4Mb memory chip, MT is about 16.7 
times faster than PS(B).  
 This work improves the result presented in [1] 
where a march test algorithm with 38N operations is  



given.  
 MT is a homogeneous march test and comprises 
only two kind of march sequences, (RWcRWc) and 
(R). Consequently, MT is adequate for built-in self-
testing implementation in embedded RAM [8]. 
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