
March Test Algorithm for 3-Coupling Faults in Random
Access Memories

CAŞCAVAL PETRU, ONEA ALEXANDRU

Dept. of Computer Science, Dept. of Automatic Control
“Gh. Asachi” Technical University of Iaşi

Bd. D.Mangeron, nr.53A, 6600, Iaşi
ROMANIA

Abstract: - A new efficient march test algorithm for detecting 3-coupling faults in Random Access Memories is
given in this paper. To reduce the length of the test only the 3-coupling faults between physically adjacent
memory cells have been considered. The proposed test algorithm needs 34N operations. Simulation results with
regard to the coupling fault coverage of the march tests, obtained based on a fault injection mechanism, are also
presented in this paper. This work improves the results presented in [1] where the same problem is dealt with
and a march test with 38N operations is given.

Key-Words: RAM, memory testing, functional faults, coupling faults, march test, fault coverage

1 Introduction
Rapid developments in semiconductor technology
resulted in continuing growth of larger and denser
random access memories (RAM) on a single chip.
More time is required to test memories because of
their increasing size. On the other hand, as a result of
the increased cell density the nature of the failure
mode becomes more complex and subtle [2].
 Memory test procedures are constrained by two
conflicting requirements:
a) to detect a wide variety of complex faults;
b) to reduce the number of memory operations in
order to allow the testing of large memory size to be
carried out in an acceptable period of time.
 Efficient test algorithms for detecting stuck-at
faults and 2-coupling faults have been proposed, see
for example Refs. [2-5]. All of these are march
algorithms with a reduced number of operations.
 For 3-coupling faults, a memory test that requires
N+36Nlog2N operations is given by Nair, Thatte and
Abraham [3]. Papachristou and Sahgal proposed in
[4] a new algorithm with the same ability to detect 3-
coupling faults but with only 37N+24Nlog2N
operations (PS(B) in this article). Unfortunately, for
the memory chips currently available, these tests take
a long time to perform. For example, assuming a
cycle time of 100 ns, PS(B) takes about 4 min to test
a 4Mb memory chip and 1h 14 min to test a 64-Mb
memory chip. This time is not acceptable in many
cases, such as the on-line testing. Both memory tests,
are lengthy because the authors have assumed that
the three coupled cells can be anywhere in the

memory. This paper proposes a new march test for 3-
coupling faults with an acceptable compromise
between the fault detection ability and the length of
the test. Thus only the 3-coupling faults that affect
physically adjacent memory cells are considered.
 This work improves the results presented in [1]
where the same problem was treated.

2 Memory Fault Model
The fault models used in this paper have been
formalised by Nair, Thatte and Abraham [3] and
refined later by Papachristou and Sahgal [4]. At the
same time some definitions and fault models have
been draw from Suk and Reddy [5]. We have also
adopted notations given by van de Goor [2].
 This paper is focused on very difficult to detect
faults such as 2-coupling and 3-coupling faults. For a
group of coupled cells transition and/or state
coupling faults may exist.
1) Transition coupling faults
a) 2-Coupling Faults A write operation that affects a
0→1 or a 1→0 transition into cell j changes the state
of another memory cell i, independently of the
contents of the other cells. This does not necessarily
imply that a state transition in cell i changes the
contents of cell j [3]. Cell i is called the coupled cell
and cell j is called the coupling cell. We can say that
cell j has an active influence on cell i.
b) 3-Coupling Faults. For a set of three coupled
cells, a transition in one cell causes the state of
another cell in the set to change from 0 to 1 or from

1 to 0, when the third remaining cell has a fixed
state.
2) State coupling faults
A state-coupling fault occurs when one or more cells
in a group of ν-coupled cells (ν ≥2) fail to undergo a
0→1 or a 1→0 transition when the complement of
the contents of the memory cell is written into the
cell [2]. This type of fault depends on the states of
the remaining ν-1 cells in the group. In this case, we
can say that the remaining ν-1 cells in the group
have a passive influence on the coupled cell. When
cell i is a coupled cell the fault is called i-state
coupling fault.
 In memory, one or more groups of coupled cells
may exist. When the pairs of groups of coupled cells
are disjoint the model is called restricted coupling
faults. As in Refs. [3,4] we considered only this
restricted model.
 The interacting coupling faults are also accepted
in this model [5]. Informally, the significance of two
interacting faults is that their combined effects may
cancel each other out.
 In this paper only the physically adjacent cells
have been considered. Two cells are physically
adjacent if they have a border or even a corner in
common. Fig. 1 shows all the four distinct patterns
(P1, P2, P3, P4) for a group S=(i,j,k) of three adjacent
cells.

 i j i j
 k P1 P4 k

 i P2 P3 i
 j k j k

Fig. 1 Patterns for three physically adjacent cells

3 Preliminaries
Definition 1. For every memory cell in RAM three
possible states can be considered [5]:
• Internal state is the actual content of the memory

cell.
• Apparent state is the result of a read operation of a

memory cell.
• Expected state is the expected content of a cell

after one or more write operations.
Definition 2. Faults are detected if and only if one or
more differences between the expected states and the
apparent states of the cells occur during the test [5].

Definition 3. A forced transition is defined in [3] as
one that is initiated by the testing algorithm by
writing into a cell (of course, this may cause
transitions in other cells because of coupling).

The following notations to describe operations on
RAM’s are used in this paper:
• R the read operation on a cell;
• Wx the operation of writing x into a cell, x∈{0,1};
• Wc the operation of writing the complement of the

previous apparent or expected state of a cell;
• ↑i the operation of writing 1 into cell i when the

previous apparent or expected state of cell i was 0;
• ↓i the operation of writing 0 into cell i when the

previous apparent or expected state of cell i was 1.
Consider S a group of v cells. To describe a failed
transition in S we use the notation given by van de
Goor [2]. Thus, a vector F with v+1 elements shows
the conditions to sensitise the fault (the initial state
of group S and the forced transition) and the result of
fault sensitising (the change of state of the coupled
cell specified in context, in the format: good
value/faulty value). For example, for a group of cells
S=(i,j,k):
• if j is a coupled cell, vector F=<0,↑,0;1/0>

describes a state coupling fault in which the
transition ↑j has no effect when cell i and k are in
the state 0.

• if k is a coupled cell, vector F=<↑,φ,0;0/1>
describes a transition coupling fault in which the
forced transition ↑i changes the state of cell k
from 0 to 1.

Definition 4. In this paper a fault is called simple
fault if only one vector F is necessary for description
the fault behaviour. If at least two vectors are
necessary for a complete description the fault is
called a complex fault.

Any complex fault can be modelled as a set of
distinct simple faults simultaneously present in the
memory. An interacting fault is a complex fault
which comprises two or more (even number) simple
faults with contrary influence on the same cell
[1],[7]. Examples of complex fault:
• Take an i→j coupling fault in which the transition

↑i changes the state of cell j from 0 to 1 and the
transition ↓i from 1 to 0. This complex interacting
fault can be modelled by two vectors:

 F1=<↑,0,φ;0/1> and F2 = <↓,1,φ;1/0>.
• Take a linked coupling fault with cell j a coupled

cell. Both transition ↑i and ↑k change the state of
cell j from 0 to 1. This fault can be modelled by
F1=<↑,0,φ;0/1> and F2 =<φ,0,↑;0/1>. This is not
an interacting fault.

 To detect a fault in a memory under testing two
conditions are needed:
• to activate (to sensitise) the fault by a proper

forced transition;
• to observe the fault by reading the changed value

of the cell affected by the fault.
Remark 1. Generally, complex faults are easier to
detect than simple faults because there are more
input vectors for which complex faults are activated.
Thus, if a test procedure detects any simple fault,
moreover, it detects all complex non-interacting
faults.
Assertion 1. The next three conditions are necessary
and sufficient for a test to detect any simple fault in a
group of coupled cells:
Condition 1. For a group of cells S the test must
force all the possible cell transitions.
Condition 2. After a forced transition into a cell the
test must read the cell to check if the state has
changed before to force another transition into the
cell.
Condition 3. Every cell must be read first before a
forced transition, in order to check if the state has
been changed by a transition in a coupled cell.
Remark 2. If for a group of cells S all the possible
transitions are forced during the test (condition 1 is
satisfied) then all the possible faults that affect the
cells in S are activated. Conditions 2 and 3 are
needed to observe the memory faults.
Definition 5. A march element (M) is a finite
sequence of operations applied to every cell in the
memory in either one of two orders, increasing
address order from address zero (⇑) or decreasing
address order from N-1 (⇓) [2]. Symbol c is used
when the address order does not matter.
Definition 6. A march test is a finite sequence with n
march elements T = <M1; M2; ... ;Mn-1; Mn>.
 The march test may also comprise one or more
sequences to initialise the memory.

4 March Tests Currently Used
The best-known march test algorithms currently used
to detect coupling faults are presented bellow.
1) The march algorithm (March C) with 10N
operations presented in [2].
2) The march algorithm (March B) with 16N
operations given by Suk and Reddy [5].
3) The march algorithm (March G) with 24N
operations given by van de Goor [2].
4) The march test with 30N operations given by Nair,
Thatte and Abraham [3] (NTA(A) in this paper).

5) The march test with 37N operations given by
Papachristou and Sahgal [4] (PS(A) in this paper).

Experimental results regarding to the 2-coupling
and 3-coupling fault coverage of these march tests
are presented in table 1 and table 2, respectively. In
order to simulate a permanent fault into the memory
under test we have used a software fault injection
mechanism based on TRAP microprocessor interrupt.
 For every possible transition in a group of coupled
cells S we have checked two kind of faults:
• state coupling faults - the forced transition does

not change the state of the addressed cell;

• transition coupling faults - the forced transition
changes the state of the addressed cell but, at the
same time, it changes the state of another coupled
cell in group S.

Table 1 Simple 2-coupling fault coverage (%)

March C
(10N)

March B
(17N)

March G
(24N)

NTA(A)
(30N)

PS(A)
(37N)

81.25 81.25 100 100 100

For 3-coupling faults four groups of cells have been
considered, one for each pattern Pi, i∈{1,2,3,4} (see
Fig.1). For each group, all possible simple 3-
coupling faults were injected: 24 state coupling
faults and 48 transition coupling faults. In total, for
all groups of cells, we have checked 288 simple
faults.

Table 2 Simple 3-coupling fault coverage (%)

March C
(10N)

March B
(17N)

March G
(24N)

NTA(A)
(30N)

PS(A)
(37N)

41.67 47.22 62.50 63.89 63.89

 All these march tests have good fault coverage for
2-coupling faults but, as we can see in table 2, have
low fault coverage for 3-coupling faults. For
example, the best of them, NTA(A) and PS(A), cover
completely 2-coupling faults but only 63.89% of
simple 3-coupling faults.
 A new efficient march test with 38N operations
able to detect all simple 3-coupling faults is given in
[1], where the same memory fault model has been
considered. In section 5 another march test to cover
restricted 3-coupling faults which affect physically
adjacent cells is presented. Comparing with the test
presented in [1] this new march test needs only 34N
operations and is more adequate for a built-in self-
testing implementation [8].

5 A New March Test Algorithm
In this section a new march test (MT) with 34N
operations is presented. This test procedure uses six
different patterns (data background) for memory
initialisation.
MT =<I1;⇑(RWcRWc);c(R); I2;⇑(RWcRWc);c(R);
 I3;⇑(RWcRWc);c(R); I4;⇑(RWcRWc);c(R);
 I5;⇑(RWcRWc);c(R); I6;⇑(RWcRWc);c(R)>
where I1, I2, I3, I4, I5 and I6 are sequences for memory

initialisation (Fig.2):
• I1 and I3 initialises any cell with 0 and 1,

respectively (solid data background);
• I2 initialises the odd columns with 0 and the even

columns with 1, and I4 vice versa (column-stripe
data background);

• I5 initialises the odd rows with 0 and the even
rows with 1, and I6 vice versa (row-stripe data
background).

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

I1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

I3

0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

I2

1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0

I4

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1

I5

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

I6

Fig. 2 Data background used by MT and the possible initial states for all distinct patterns

Remark 3. Every march element RWcRWc applied
to a memory cell leaves the cell into the same state
because the cell is switched twice. Consequently, a
march sequence leaves the memory into the same
state if no fault has occurred.
Assertion 2.

The march test MT detects all simple 3-coupling
faults which affect physically adjacent cells.
Demonstration

Consider a group of three physically adjacent cells

S=(i,j,k) with addresses in increasing order (i<j<k).
We have to check that MT activates and observes

any simple fault in group of cells S.

1. MT activates any fault in group of cells S

To activate any fault in group S the test program
must force all possible transitions in this group
(assertion 1 in section 3). For a group of three cells
24 distinct transitions exist. Fig.3 shows the Eulerian
graph of states for a group of three cells.

Every group of three physically adjacent cells

corresponds with one of the patterns P1, P2, P3 or P4
(see Fig.1). Consequently, we consider a group of
cells for each pattern P1, P2, P3 and P4 and
demonstrate that MT covers the graph of states.

 010 110

 000 100

 011 111

 001 101

Fig. 3 The Eulerian graph of states for a group of
cells S=(i,j,k)

We can see that two adjacent nodes (states) in the

graph have only one bit changed and two non-
adjacent nodes have at least two bits changed.

A march sequence in MT performs six different
transitions in group of cells S. In the Eulerian graph
three adjacent nodes are visited (going and coming
back) and, finally, the group of cells returns to the
initial state (before the sequence started). For
example, the first sequence I1;⇑(RWcRWc) performs
the transitions marked with solid lines in the graph.
 As highlighted in Fig.2 the initialisation sequences
I1, I2, I3, I4, I5 and I6 ensure in a group of cells S the
states presented in Table 3. Of course, these initial
states are specific for each pattern.

Table 3 The initial states for a group S

 I1 I3 I2 and I4 I5 and I6

P1 000 111 101, 010 110, 001
P2 000 111 110, 001 011, 100
P3 000 111 101, 010 100, 011
P4 000 111 011, 100 001, 110

Table 4 The missing initial states for a group S

Pattern States

P1 011, 100

P2 010, 101

P3 001, 110

P4 010, 101

For every group of cells only two initial states can
not be obtained by the sequences I1, I2, I3, I4, I5 and
I6. Table 4 gives the initial states which are missing.
 For all patterns, the two missing initial states are
complementary states as all bits are changed. In a
geometrical interpretation (see Fig.3), the associated
nodes in the graph of states are not in the same plane.
In these conditions, it can easily check that the
Eulerian graph of states is completely covered, in all
the four cases. In other words, MT forces all possible
transitions in every group of three physically
adjacent cells and, consequently, is able to activate
any fault in a group of coupled cells.

2. MT observes any simple fault activated in group S

MT repeats the pair of march sequences (RWcRWc)
and (R) six times. Thus, for every memory cell a
write operation (Wc) is preceded and succeeded by a
read operation (R). Consequently, condition 2 and 3
previously defined in section 3 (assertion 1) are
satisfied. □
 Because MT is able to detect any simple restricted
3-coupling fault it also covers the complex non-
interacting 3-coupling faults (remark 1 in section 3).
In addition, MT is also able to detect the interacting
coupling faults, but this complex problem can not be
treated here.
 The simulation result confirms that MT detects all
simple 3-coupling faults.

6 Conclusions

This paper presents a new efficient march test
algorithm for coupling faults in random access
memories. Only the coupling faults between
physically adjacent cells have been considered.

MT needs 34N operations and covers the 3-
coupling fault model. We demonstrated analytically
that MT is able to detect all simple 3-coupling faults
using an Eulerian graph model.

Experimental results with regard to the coupling
fault coverage of the best-known march tests are also
given in this paper.
 Taking into account the 3-coupling fault coverage,
MT is better than all the march tests currently used.
 Comparing with the non-march test PS(B), also
especially designed to cover 3-coupling faults, MT is
considerable reduced. For example, MT takes 14.2s
and PS(B) about 4 min to test a 4Mb memory chip if
we assume a cycle time of 100 ns. In other words,
for testing a 4Mb memory chip, MT is about 16.7
times faster than PS(B).
 This work improves the result presented in [1]
where a march test algorithm with 38N operations is

given.
 MT is a homogeneous march test and comprises
only two kind of march sequences, (RWcRWc) and
(R). Consequently, MT is adequate for built-in self-
testing implementation in embedded RAM [8].

References:
[1] Caşcaval P., Bennett S., Efficient March Test for

3-Coupling Faults in Random Access Memories,
Microprocessors and Microsystems, Elsevier
Science, Vol. 24, No. 10, 2001, pp.501-509.

[2] van de Goor A.J., Using March Tests to Test
SRAMs, IEEE Design and Test of Computers,
January-March, 1993, pp.8-14.

[3] Nair R., Thatte S., Abraham J., Efficient
Algorithms for Testing Semiconductor Random-
Access Memories, IEEE Transactions on
Computers, Vol. C-27, No.6, 1978, pp. 572-576.

[4] Papachristou C., Sahgal N., An Improved
Method for Detecting Functional Faults in

Semiconductor Random Access Memories, IEEE
Transactions on Computers, Vol. C-34, No.2,
1985, pp.110-116.

[5] Suk D.S., Reddy M., A March Test for
Functional Faults in Semiconductor Random
Access Memories, IEEE Transactions on
Computers, vol. C-30, No.12, pp.982-985.

[6] Caşcaval P., Huţanu C., Silion R., Memory Fault
Coverage Evaluation For March Tests, Buletinul
Institutului Politehnic Iaşi, Tomul XLV (IL),
Fasc.1-4, Automatică şi Calculatoare, 1999,
pp.89-96.

[7] Caşcaval P., Interacting Coupling Faults in
Random Access Memories, Buletinul Institutului
Politehnic Iaşi, Tomul XLVI (L), Fasc.1-4,

 Automatică şi Calculatoare, 2000, pp.121-130.
[8] Caşcaval P., Onofrei V., Built-in Self-Testing for

Coupling Faults in Random Access Memories,
Buletinul Institutului Politehnic Iaşi, Tomul
XLVI (L), Fasc.1-4, Automatică şi Calculatoare,
2000, pp.93-101.

