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Abstract: In this paper, we present a parallel algorithm for edge detection based on Infinite Impulse Response 
filter (IIR filter). In particular, the Infinite size Symmetric Exponential Filter (ISEF) that is an optimal IIR filter 
and computationally efficient smoothing filter is studied. The proposed algorithm exploits efficiently all aspects of 
potential parallelism (spatial parallelism, temporal parallelism and systolism) inherent in the studied edge 
detection algorithms. The designed concurrent algorithm is expressed in terms of a collection of concurrent 
processes communicating and synchronizing in an efficient way in order to speed up the low-level operations. 
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1  Introduction 
Computer vision has been an area where the 
computational demand is far above the capacity of a 
conventional sequential computer. This is due to the 
large amount of data to be processed by the time-
consuming vision tasks. To overcome this problem, 
computer vision can take advantages of parallel 
architectures. In fact, parallel systems play a central 
role in the future of computing. This vital role is 
increasing rapidly as the costs involved in improving 
semi-conductor circuit speed and density become 
higher. In this paper, we describe a parallel algorithm 
for speeding up edge detection based on the Infinite 
Impulse Response filter (IIR filter). 
 
The low-level tasks operate on an input image and 
are characterized by uniform and local computation 
over the whole image array. These characteristics 
lead to efficient parallel implementation of such 
algorithms and ease control and scheduling. The 
processing model of the IIR filters presents a 
potential parallelism (spatial parallelism, temporal 
parallelism and systolism). The proposed concurrent 
algorithm exploits efficiently all these types of 
parallelism inherent in the segmentation process. 
Thus, it is successfully used for speeding up the low-
level operations that provide less noisy and very well 
localized edges. 
 

The remaining of the paper is organized as follows. 
Section 2 describes edge detectors based on IIR 
filters and in particular a detailed description of ISEF 
filter is introduced. The potential parallelism inherent 
in ISEF filter and the description of the proposed 
parallel algorithm are presented in section 3. Finally, 
conclusions from the work are drawn and further 
research work is suggested. 
 
 
2  IIR Filter Based Edge Detection  
Local intensity discontinuities, commonly referred to 
as edges, are important attributes for an image 
because they correspond in general to the important 
changes of physical or geometrical properties of 
objects in the scene and they are widely used as 
primitives in pattern recognition and image 
matching. These edges can be detected by maxima of 
gradient or the zero crossing of the second 
derivatives calculated by some differential operators. 
Many methods for edge detection in noisy images 
have been proposed such as Robert gradient, Sobel 
operators and many others [1-4]. However, these 
early differential operators are very sensitive to noise 
because numerical differentiation of images is an ill-
posed problem in the sense of Hadamard [5]. 
Differentiation needs to be regularized by a 
regularization filtering operation before 
differentiation. Therefore, a preprocessing such as 



smoothing is in general necessary to reduce the 
noise. 
 
A well-known smoothing filter is the Gaussian filter 
and the edges can be detected by a Laplacian-
Gaussian filter. But there is an essential difficulty of 
the Laplacian-Gaussian filter, which is the 
contradiction between smoothing effect and the 
precision of localization. To overcome this difficulty, 
many exponential filters which are Infinite Impulse 
Response filters were proposed [6,7]. In order to 
present the processing model of such IIR filters, the 
Infinite Size Exponential filter (ISEF filter) is studied 
in more details. This filter proposed by Shen and 
Castan is an optimal linear filter based on one-step 
model (a step edge and white noise) and the multi-
edge model. Moreover, this optimal smoothing filter 
is a symmetric exponential filter of an infinitely large 
window size and can be realized by a very simple 
and computationally efficient recursive algorithm. A 
theoretical analysis for the performance of this filter 
[8] has shown that this filter is superior to the other 
current filters. In addition, this filter presents many 
advantages such as it has a constant time of 
execution for different sizes of the operator and is 
readily amenable to parallel implementation.  
 
In 1-D, the normalized Infinite size Symmetric 
Exponential Filter (ISEF) has the form [7,9]: 
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Because the exponential filter is an IIR filter, the 
functions f f x1 2(x) and  ( ) are realized by a 
computationally efficient recursive algorithm. 
Assume that I x y( , )  is the input image, 
I x y I x y f x1 1( , ) ( , ) ( )= ⊗  and I x y I x y f x2 2( , ) ( , ) ( )= ⊗ , 
the recursive algorithms are as follows: 
 

I x y I x y a I x y I x y

I x y I x y a I x y I x y
1 1 0 1

2 2 0 2

1 1

1 1

( , ) ( , ) . ( ( , ) ( , ))

( , ) ( , ) . ( ( , ) ( , ))

= − + − −

= + + − +
 

 
In 2-D, as the exponential function is separable, the 
exponential filter can be written as follows: 
 

f x y f x f yL L( , ) ( ). ( )=  
 
Therefore, the first and second directional derivatives 
of input images can be calculated by the recursive 
algorithms f f1 2 and  and calculated simultaneously 
as shown below [7,8]: 
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Similarly: 
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With this algorithm, we can calculate simultaneously 
the first and second directional derivative I Ix xx  and  
(or I Iy yy    and   ) of  input image as shown on fig.1. 
Using the differential operators derived from the 2-D 
exponential filter, Shen and Castan have proposed 
several methods for edges detection [7]. One uses 
maxima of gradient (GEF), another uses the zeros 
crossing of second directional derivative along the 
gradient (SDEF), etc. For instance, GEF method 
consists of calculating firstly Ix Iy and  then the 
gradient can be determined approximately for every 
point in the input image by: 
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Non maxima in the gradient magnitude image is then 
suppressed and thresholded by hysterisis. In the 
following sections, a detailed description of the 
parallel version of the above described edge detector 
is presented. 
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  Fig.1.  Processing model of ISEF filter4 [7,9] 
 

 
3 Strategy for Parallel Algorithm 
Design 
Despite the hardware technology improvements of 
parallel computers, there is a substantial 
misalignment between the potential user's 
expectations and the actual usability of software for 
such systems [10-15]. This is due to many machine 
dependents aspects that have a significant impact on 
the final performance obtained. Consequently, the 
design of parallel systems requires care and accuracy 
if the results obtained from the system are to be 
useful. These requirements mean that an accurate 
model of the system to be implemented must be 
derived and this model carefully mapped onto the 
target architecture [16]. Furthermore, the 
concurrency inherent in the processing model should 
be used to the full in any implementation of the 
parallel system. Therefore, the design method should 
include techniques that exploit and control the 
parallel nature of the system. These techniques 
concern mainly: 
 
� Partitioning of the software into appropriate 

processes 
� The design of the interprocess 

communication structure 
� The internal design of each individual 

process. 
� Task allocation, and task scheduling 

 
In the following sections we look at the above-
mentioned constraints in more details, aiming to 
translate the conceptual model of the problem into an 
algorithm that is formulated in parallel form with the 
objective of achieving a better performance in its 
execution. 
 
 

3.1 Inherent Parallelism in ISEF Filter 
In order to achieve the maximum speed up, a system 
must be designed to be able to exploit the 
characteristics of the problem to be solved in the 
most efficient way. The processing model of the 
optimal exponential filter (ISEF) which is an IIR 
filter shows a potential parallelism. As described in 
section 2, the whole processing task is split into two 
functional blocks performing respectively a 1-D 
smoothing operation and a 1-D differentiation into a 
perpendicular direction (fig.1). This temporal 
characteristic suggests the use of a two sets of 
processes working in a pipeline fashion. The first set 
of processes performs the smoothing operation and 
then communicates the results to the second pipe 
which carries out differentiation. The advantage of 
such configuration is the overlapping of successive 
image frames, hence, increasing the overall 
throughput of the algorithm. 
 
As shown in fig.1, in each stage of the pipe, the 
functions f1 and f2 in their recursive form present 
other aspects of parallelism (spatial parallelism and 
systolism). By spatial parallelism here we mean that 
each image row and column can be independently 
and simultaneously processed during the operation of 
smoothing and differentiation. In other words, each 
image row (column) might be allocated to a 
concurrent process. The simultaneous data allocation 
is performed to meet the required throughput of the 
concurrent algorithm, and hence, achieving a 
considerable processing time reduction for the 
functions f1 and f2.  In addition to this, all pixels in 
each image row (column) are characterized by 
uniform and local computation that is performed in a 
pipeline fashion, in the sense that the processing at a 
specific pixel is considered if and only if the one 
preceding is achieved. The progress in time of such 
processing imitate the systolic model of processing 
where a vector of processes, each of which associated 
to a pixel, is fed by the same set of data. The use of 
systolism reduces considerably the computational 
complexity and scheduling problems. Furthermore, 
by exploiting systolism at each row (column), an 
overlapping is enabled between rows (columns) of 
different image frames. This fine-grained partitioning 
reduces significantly the processing time of a 
sequence of images.  
3.2  Parallel Algorithm Structure 
Due to the potential parallelism inherent in the 
processing, the algorithm requirements in terms of 
communication, control and scheduling are very 
high. Therefore, the parallel algorithm structure 



should be carefully designed to satisfy these vital 
constraints. To outline the logical structure of such 
concurrent algorithm and for sake of readability, an 
Occam like pseudo- code is used to express 
concurrency, communication and scheduling. It 
should be noted here that other parallel programming 
languages could be used to describe the proposed 
parallel algorithm.  
 
Edge detection using ISEF filter provides reliable 
and accurate edge maps and in revenge, requires an 
enormous computational demand. To exploit inherent 
parallelism described in the previous section, the 
proposed algorithm consists of three categories of 
concurrent processes that are: image allocator 
process, smoothing processes and differentiation 
processes. The smoothing and differentiation 
operations are carried out using arrays of processes 
as shown in fig.2. The algorithm structure is designed 
so that the first and second derivatives in the 
horizontal direction (Ix, Ixx) and those in the vertical 
direction (Iy, Iyy) are generated simultaneously. 
Hence, enabling a concurrent computation of the 
derivatives (Ix, Ixx, Iy, Iyy) for a sequence of images 
in a systolic way. The following Occam process 
describes the overall architecture of the concurent 
algorithm. 
 
  PAR 
            Image_Allocator ( ) 
            Smoothing_Stage( ) 
            Differentiation_Stage( ) 
 
 
3.2.1 Image Allocator Process 
The image allocator process divides the image 
space into separate rows and columns and then 
allocates every couple (ith row, ith column)i=1,n 
to the first process on the ith row of the array of 
processes as shown in fig.3. Each couple of 
image row and column consists of pairs of 
pixels, which enables the simultaneous 
computation of all derivatives (Ix, Ixx, Iy, 
Iyy). The functional description of the 
processing at this stage can be summarized by 
the following code: 
 

Allocator Processes
for smoothing

Processes
for differentiation

 
 

Fig.2. The overall structure of the parallel algorithm 
for edge detection 

 
 PAR  i = 0 FOR N 
      SEQ 
                    Get_couple(row_i, column_i) 
          Ch_allocator[i] ! couple 
 
 

processes  of 
the Ith row

Allocator Ith row,
Ith column

 
 

Fig.3. Image allocator process 
 
3.2.2 Processes for Smoothing 
Processes for the smoothing operation are concerned 
with the computation of the one-dimensional (1-D) 
smoothing function. The way processes are logically 
interconnected shows the independence in processing 
separate rows and columns. Only pairs of image 
pixels or resulting pixels are communicated between 
neighboring processes in a systolic way. For each 
process, the 1-D smoothing operation is achieved 
using two concurrent sub-processes (producer and 
consumer) as shown in fig.4.  The process describing 
the overall processing at this stage is as follows: 
 
  PAR  i=0 FOR N 
       PAR  j=0 FOR N 
                       SEQ 
                   Initialisations 
                   PAR 
                            Producer(i,j) 
                            Consumer(i,j) 
 
The producer process receives from his right 
neighbor as shown in figure 4 the following 
sequence: a block of data already processed; its own 



image data; and the data that should be allocated to 
its left neighbors. After processing its own data, a 
copy of the results are sent to a FIFO operating 
buffer to be used by the consumer process (see fig.4), 
and another copy of those results is forwarded to the 
left producer process. Hence, the size of data 
traversing processes along each row decreases 
gradually as going to the left end.  The pseudo-code 
describing the producer process is given below: 
 

P roducer

C onsum er

R esult tow ard the corresponding 

D ata block from  the right
 neighbouring producer

D ata block tow ard the left
 neighbouring producer

D ata block tow ard the 
right neighbouring consum er

D ata block from  the left
 neighbouring consum er

process at differentiation stage  
 

Fig.4. A typical concurrent process for smoothing  
 
   WHILE TRUE 
       SEQ 
         Ch_producer[i][j] ? Data_block 
         Process the corresponding pair of data 
         PAR 
           Save the result in a FIFO operating buffer 
           Ch_producer[i][j+1] ! Result_block 
 
The consumer process performs a similar processing 
to the one described above. After receiving both of 
the partial results from the producer to which it is 
connected and those results that are communicated 
by its left neighboring consumer process, a local 
processing is performed and results are sent to both 
of the processes performing differentiation and the 
right neighboring consumer (see fig.4). The 
following pseudo-code summarizes the processing at 
this level: 
 
 WHILE TRUE 
                   SEQ 
        Ch_consumer[i][j+1] ? Data_pair 
        Process the  pair of data 
        PAR 
          Ch_consumer[i][j] ! Result_pair 
          Ch_stage_1-2[i][j] ! Result_pair 
The use of a FIFO operating buffer as a 
communication tool between the producer and 
consumer sub-processes is advantageous in the sense 
that the time separating the end of a production and 

the beginning of its consummation is spent 
processing data of different image sequence. Hence 
enabling overlapping the 1-D smoothing function of 
a sequence of images.  
 
3.2.3 Processes for differentiation 
In a pipeline fashion, the set of processes at this stage 
performs the 1-D differentiation operation into a 
perpendicular direction as shown in fig.2. For each 
process, four concurrent sub-processes apply a set of 
elementary processing operations ( see ISEF model 
of processing) to each pair of data received from the 
smoothing stage in order to compute (Ix, Iy, Ixx and 
Iyy). The pseudo-code describing the processes  for 
differentiation is given below: 
 
 PAR  j=0 FOR N 
      PAR  i=0 FOR N 
            SEQ 
                 Initialisations 
                 PAR 
                      Receiver(j,i) 
                      Producer_1(j,i) 
                      Producer_2(j,i) 
                      Consumer(j,i) 
 
The receiver process stores pairs of data resulting 
from the smoothing stage in a FIFO operating buffer 
for later processing. Once a pair of data is consumed, 
it is then removed from the buffer. The pseudo-code 
describing the receiver process is given below : 
 
      WHILE TRUE 
          SEQ 
             Ch_stage_1-2[i][j] ? Data_pair 
             Store data in a FIFO operating buffer 
            WHILE  buffer is full 
      SKIP 
 
The producer sub-processes P1 and P2 performs the 
same elementary processing operations but in 
opposite direction using pairs of data stored in the 
receiver buffer and results communicated by 
neighbouring processes. The intermediate results of 
these sub-processes are saved in their own buffers 
and also communicated to neighbouring processes. 
The pseudo-code describing the producer sub-
process P1 is given below: 
 
   WHILE TRUE 
        SEQ 
        Ch_producer_1[i-1][j] ? Data_pair 
        WHILE  (Producer_1_buffer is full)   OR 



       (Receiver_buffer is empty) 
             SKIP 
        Process the received pair of data 
        PAR 
             Store the results in buffer 
             Ch_producer_1[i][j] ! Result_pair 
 
The consumer sub-process provides the resulting 
derivatives Ix, Iy, Ixx and Iyy. The process (i, j) at 
differentiation stage computes the derivatives (Iy, 
Iyy) for pixel (i, j) and the derivatives (Ix, Ixx) for 
pixel (j, i) of the same image. This process is 
summarized by the following pseudo-code: 
 
WHILE TRUE 
  SEQ 
     WHILE  (Producer_1_buffer is empty)OR 
                 (Producer_2_buffer is  empty) 
        SKIP 
   Compute  the  resulting   derivatives 
    (Ix,Iy,Ixx,Iyy)  
 
 
4  Conclusion 
In this paper, a parallel algorithm for edge detection 
based on Infinite Impulse Response filters is 
presented. In particular, a parallel version of the 
Infinite size Symmetric Exponential Filter (ISEF) 
that is an optimal, computationally efficient, 
smoothing filter is developed. The proposed 
algorithm uses efficiently all types of potential 
parallelism inherent in the low level processing such 
as spatial and temporal parallelism and systolism. 
The proposed algorithm can be easily used to support 
any IIR filters. Although this paper deals with 2-D 
edge detection, the proposed algorithm could be 
adapted to 3-D edge detection such as Castan’s and 
Deriche ’s 3D-filters.  A performance evaluation 
study of the proposed algorithm is currently under 
investigation. 
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