

PARALLELIZING INFINITE IMPULSE RESPONSE FILTERS

RACHID BENLAMRI
Computer Engineering Department

Etisalat College of Engineering
Po. Box 980 Sharjah

UNITED ARAB EMIRATES

Abstract: In this paper, we present a parallel algorithm for edge detection based on Infinite Impulse Response
filter (IIR filter). In particular, the Infinite size Symmetric Exponential Filter (ISEF) that is an optimal IIR filter
and computationally efficient smoothing filter is studied. The proposed algorithm exploits efficiently all aspects of
potential parallelism (spatial parallelism, temporal parallelism and systolism) inherent in the studied edge
detection algorithms. The designed concurrent algorithm is expressed in terms of a collection of concurrent
processes communicating and synchronizing in an efficient way in order to speed up the low-level operations.

Key-words: Edge detection, Infinite Impulse Response filter, ISEF filter, Spatial parallelism, Temporal
parallelism.

1 Introduction
Computer vision has been an area where the
computational demand is far above the capacity of a
conventional sequential computer. This is due to the
large amount of data to be processed by the time-
consuming vision tasks. To overcome this problem,
computer vision can take advantages of parallel
architectures. In fact, parallel systems play a central
role in the future of computing. This vital role is
increasing rapidly as the costs involved in improving
semi-conductor circuit speed and density become
higher. In this paper, we describe a parallel algorithm
for speeding up edge detection based on the Infinite
Impulse Response filter (IIR filter).

The low-level tasks operate on an input image and
are characterized by uniform and local computation
over the whole image array. These characteristics
lead to efficient parallel implementation of such
algorithms and ease control and scheduling. The
processing model of the IIR filters presents a
potential parallelism (spatial parallelism, temporal
parallelism and systolism). The proposed concurrent
algorithm exploits efficiently all these types of
parallelism inherent in the segmentation process.
Thus, it is successfully used for speeding up the low-
level operations that provide less noisy and very well
localized edges.

The remaining of the paper is organized as follows.
Section 2 describes edge detectors based on IIR
filters and in particular a detailed description of ISEF
filter is introduced. The potential parallelism inherent
in ISEF filter and the description of the proposed
parallel algorithm are presented in section 3. Finally,
conclusions from the work are drawn and further
research work is suggested.

2 IIR Filter Based Edge Detection
Local intensity discontinuities, commonly referred to
as edges, are important attributes for an image
because they correspond in general to the important
changes of physical or geometrical properties of
objects in the scene and they are widely used as
primitives in pattern recognition and image
matching. These edges can be detected by maxima of
gradient or the zero crossing of the second
derivatives calculated by some differential operators.
Many methods for edge detection in noisy images
have been proposed such as Robert gradient, Sobel
operators and many others [1-4]. However, these
early differential operators are very sensitive to noise
because numerical differentiation of images is an ill-
posed problem in the sense of Hadamard [5].
Differentiation needs to be regularized by a
regularization filtering operation before
differentiation. Therefore, a preprocessing such as

smoothing is in general necessary to reduce the
noise.

A well-known smoothing filter is the Gaussian filter
and the edges can be detected by a Laplacian-
Gaussian filter. But there is an essential difficulty of
the Laplacian-Gaussian filter, which is the
contradiction between smoothing effect and the
precision of localization. To overcome this difficulty,
many exponential filters which are Infinite Impulse
Response filters were proposed [6,7]. In order to
present the processing model of such IIR filters, the
Infinite Size Exponential filter (ISEF filter) is studied
in more details. This filter proposed by Shen and
Castan is an optimal linear filter based on one-step
model (a step edge and white noise) and the multi-
edge model. Moreover, this optimal smoothing filter
is a symmetric exponential filter of an infinitely large
window size and can be realized by a very simple
and computationally efficient recursive algorithm. A
theoretical analysis for the performance of this filter
[8] has shown that this filter is superior to the other
current filters. In addition, this filter presents many
advantages such as it has a constant time of
execution for different sizes of the operator and is
readily amenable to parallel implementation.

In 1-D, the normalized Infinite size Symmetric
Exponential Filter (ISEF) has the form [7,9]:

f x C a a
f x f x
C f x f x a x

L
x() . .()

() ()
.(() () . ())

= −
= ⊗
= + −

0 0

1 2

1 2 0

1

 δ

where: C a= −

⊗
1 2 0/ ()

 means the convolution

f x
a a x

x

f x
x

a a x

x

x

1
0 0

2
0 0

1 0
0 0

0 0
1 0

()
.()

() .()

=
− ≥

<





=
>

− ≤


 −

Because the exponential filter is an IIR filter, the
functions f f x1 2(x) and () are realized by a
computationally efficient recursive algorithm.
Assume that I x y(,) is the input image,
I x y I x y f x1 1(,) (,) ()= ⊗ and I x y I x y f x2 2(,) (,) ()= ⊗ ,
the recursive algorithms are as follows:

I x y I x y a I x y I x y

I x y I x y a I x y I x y
1 1 0 1

2 2 0 2

1 1

1 1

(,) (,) . ((,) (,))

(,) (,) . ((,) (,))

= − + − −

= + + − +

In 2-D, as the exponential function is separable, the
exponential filter can be written as follows:

f x y f x f yL L(,) (). ()=

Therefore, the first and second directional derivatives
of input images can be calculated by the recursive
algorithms f f1 2 and and calculated simultaneously
as shown below [7,8]:

I x y
x

I x y f x y

I x y f y f y f x f x

x (,) ((,) (,))

(,) () () (() ())

= ⊗

= ⊗ ⊗ ⊗ −

∂
∂

 1 2 2 1

I x y
x

I x y f x y

I x y f y f y f x f x
f y f y

xx (,) ((,) (,))

(,) () () (() ())
() ()

= ⊗

= ⊗ ⊗ ⊗ +
⊗ ⊗

∂
∂

2

2

1 2 2 1

1 2

 - 2.I(x, y)

Similarly:

I x y I x y f x f x f y f yy (,) (,) () () (() ())= ⊗ ⊗ ⊗ −1 2 2 1
I x y I x y f x f x f y f y

f x f x
yy (,) (,) () () (() ())

() ()
= ⊗ ⊗ ⊗ +

⊗ ⊗
1 2 2 1

1 2 - 2.I(x,y)

With this algorithm, we can calculate simultaneously
the first and second directional derivative I Ix xx and
(or I Iy yy and) of input image as shown on fig.1.
Using the differential operators derived from the 2-D
exponential filter, Shen and Castan have proposed
several methods for edges detection [7]. One uses
maxima of gradient (GEF), another uses the zeros
crossing of second directional derivative along the
gradient (SDEF), etc. For instance, GEF method
consists of calculating firstly Ix Iy and then the
gradient can be determined approximately for every
point in the input image by:

∇ =

∇ = +

I x y I x y I x y

I x y I x y I x y

x y

x y

(,) ((,), (,))

(,) (,) (,)2 2

Non maxima in the gradient magnitude image is then
suppressed and thresholded by hysterisis. In the
following sections, a detailed description of the
parallel version of the above described edge detector
is presented.

I(x,y)
f1(y) f2(y)

f1(x)

f2(x)

* 2

Ix(x,y)

Ixx(x,y)

Smoothing block

Differential block

+

+

++

_

_

Σ

Σ

Σ

Input
image

Differential
output

 Fig.1. Processing model of ISEF filter4 [7,9]

3 Strategy for Parallel Algorithm
Design
Despite the hardware technology improvements of
parallel computers, there is a substantial
misalignment between the potential user's
expectations and the actual usability of software for
such systems [10-15]. This is due to many machine
dependents aspects that have a significant impact on
the final performance obtained. Consequently, the
design of parallel systems requires care and accuracy
if the results obtained from the system are to be
useful. These requirements mean that an accurate
model of the system to be implemented must be
derived and this model carefully mapped onto the
target architecture [16]. Furthermore, the
concurrency inherent in the processing model should
be used to the full in any implementation of the
parallel system. Therefore, the design method should
include techniques that exploit and control the
parallel nature of the system. These techniques
concern mainly:

� Partitioning of the software into appropriate

processes
� The design of the interprocess

communication structure
� The internal design of each individual

process.
� Task allocation, and task scheduling

In the following sections we look at the above-
mentioned constraints in more details, aiming to
translate the conceptual model of the problem into an
algorithm that is formulated in parallel form with the
objective of achieving a better performance in its
execution.

3.1 Inherent Parallelism in ISEF Filter
In order to achieve the maximum speed up, a system
must be designed to be able to exploit the
characteristics of the problem to be solved in the
most efficient way. The processing model of the
optimal exponential filter (ISEF) which is an IIR
filter shows a potential parallelism. As described in
section 2, the whole processing task is split into two
functional blocks performing respectively a 1-D
smoothing operation and a 1-D differentiation into a
perpendicular direction (fig.1). This temporal
characteristic suggests the use of a two sets of
processes working in a pipeline fashion. The first set
of processes performs the smoothing operation and
then communicates the results to the second pipe
which carries out differentiation. The advantage of
such configuration is the overlapping of successive
image frames, hence, increasing the overall
throughput of the algorithm.

As shown in fig.1, in each stage of the pipe, the
functions f1 and f2 in their recursive form present
other aspects of parallelism (spatial parallelism and
systolism). By spatial parallelism here we mean that
each image row and column can be independently
and simultaneously processed during the operation of
smoothing and differentiation. In other words, each
image row (column) might be allocated to a
concurrent process. The simultaneous data allocation
is performed to meet the required throughput of the
concurrent algorithm, and hence, achieving a
considerable processing time reduction for the
functions f1 and f2. In addition to this, all pixels in
each image row (column) are characterized by
uniform and local computation that is performed in a
pipeline fashion, in the sense that the processing at a
specific pixel is considered if and only if the one
preceding is achieved. The progress in time of such
processing imitate the systolic model of processing
where a vector of processes, each of which associated
to a pixel, is fed by the same set of data. The use of
systolism reduces considerably the computational
complexity and scheduling problems. Furthermore,
by exploiting systolism at each row (column), an
overlapping is enabled between rows (columns) of
different image frames. This fine-grained partitioning
reduces significantly the processing time of a
sequence of images.
3.2 Parallel Algorithm Structure
Due to the potential parallelism inherent in the
processing, the algorithm requirements in terms of
communication, control and scheduling are very
high. Therefore, the parallel algorithm structure

should be carefully designed to satisfy these vital
constraints. To outline the logical structure of such
concurrent algorithm and for sake of readability, an
Occam like pseudo- code is used to express
concurrency, communication and scheduling. It
should be noted here that other parallel programming
languages could be used to describe the proposed
parallel algorithm.

Edge detection using ISEF filter provides reliable
and accurate edge maps and in revenge, requires an
enormous computational demand. To exploit inherent
parallelism described in the previous section, the
proposed algorithm consists of three categories of
concurrent processes that are: image allocator
process, smoothing processes and differentiation
processes. The smoothing and differentiation
operations are carried out using arrays of processes
as shown in fig.2. The algorithm structure is designed
so that the first and second derivatives in the
horizontal direction (Ix, Ixx) and those in the vertical
direction (Iy, Iyy) are generated simultaneously.
Hence, enabling a concurrent computation of the
derivatives (Ix, Ixx, Iy, Iyy) for a sequence of images
in a systolic way. The following Occam process
describes the overall architecture of the concurent
algorithm.

 PAR
 Image_Allocator ()
 Smoothing_Stage()
 Differentiation_Stage()

3.2.1 Image Allocator Process
The image allocator process divides the image
space into separate rows and columns and then
allocates every couple (ith row, ith column)i=1,n
to the first process on the ith row of the array of
processes as shown in fig.3. Each couple of
image row and column consists of pairs of
pixels, which enables the simultaneous
computation of all derivatives (Ix, Ixx, Iy,
Iyy). The functional description of the
processing at this stage can be summarized by
the following code:

Allocator Processes
for smoothing

Processes
for differentiation

Fig.2. The overall structure of the parallel algorithm
for edge detection

 PAR i = 0 FOR N
 SEQ
 Get_couple(row_i, column_i)
 Ch_allocator[i] ! couple

processes of
the Ith row

Allocator Ith row,
Ith column

Fig.3. Image allocator process

3.2.2 Processes for Smoothing
Processes for the smoothing operation are concerned
with the computation of the one-dimensional (1-D)
smoothing function. The way processes are logically
interconnected shows the independence in processing
separate rows and columns. Only pairs of image
pixels or resulting pixels are communicated between
neighboring processes in a systolic way. For each
process, the 1-D smoothing operation is achieved
using two concurrent sub-processes (producer and
consumer) as shown in fig.4. The process describing
the overall processing at this stage is as follows:

 PAR i=0 FOR N
 PAR j=0 FOR N
 SEQ
 Initialisations
 PAR
 Producer(i,j)
 Consumer(i,j)

The producer process receives from his right
neighbor as shown in figure 4 the following
sequence: a block of data already processed; its own

image data; and the data that should be allocated to
its left neighbors. After processing its own data, a
copy of the results are sent to a FIFO operating
buffer to be used by the consumer process (see fig.4),
and another copy of those results is forwarded to the
left producer process. Hence, the size of data
traversing processes along each row decreases
gradually as going to the left end. The pseudo-code
describing the producer process is given below:

P roducer

C onsum er

R esult tow ard the corresponding

D ata block from the right
 neighbouring producer

D ata block tow ard the left
 neighbouring producer

D ata block tow ard the
right neighbouring consum er

D ata block from the left
 neighbouring consum er

process at differentiation stage

Fig.4. A typical concurrent process for smoothing

 WHILE TRUE
 SEQ
 Ch_producer[i][j] ? Data_block
 Process the corresponding pair of data
 PAR
 Save the result in a FIFO operating buffer
 Ch_producer[i][j+1] ! Result_block

The consumer process performs a similar processing
to the one described above. After receiving both of
the partial results from the producer to which it is
connected and those results that are communicated
by its left neighboring consumer process, a local
processing is performed and results are sent to both
of the processes performing differentiation and the
right neighboring consumer (see fig.4). The
following pseudo-code summarizes the processing at
this level:

 WHILE TRUE
 SEQ
 Ch_consumer[i][j+1] ? Data_pair
 Process the pair of data
 PAR
 Ch_consumer[i][j] ! Result_pair
 Ch_stage_1-2[i][j] ! Result_pair
The use of a FIFO operating buffer as a
communication tool between the producer and
consumer sub-processes is advantageous in the sense
that the time separating the end of a production and

the beginning of its consummation is spent
processing data of different image sequence. Hence
enabling overlapping the 1-D smoothing function of
a sequence of images.

3.2.3 Processes for differentiation
In a pipeline fashion, the set of processes at this stage
performs the 1-D differentiation operation into a
perpendicular direction as shown in fig.2. For each
process, four concurrent sub-processes apply a set of
elementary processing operations (see ISEF model
of processing) to each pair of data received from the
smoothing stage in order to compute (Ix, Iy, Ixx and
Iyy). The pseudo-code describing the processes for
differentiation is given below:

 PAR j=0 FOR N
 PAR i=0 FOR N
 SEQ
 Initialisations
 PAR
 Receiver(j,i)
 Producer_1(j,i)
 Producer_2(j,i)
 Consumer(j,i)

The receiver process stores pairs of data resulting
from the smoothing stage in a FIFO operating buffer
for later processing. Once a pair of data is consumed,
it is then removed from the buffer. The pseudo-code
describing the receiver process is given below :

 WHILE TRUE
 SEQ
 Ch_stage_1-2[i][j] ? Data_pair
 Store data in a FIFO operating buffer
 WHILE buffer is full
 SKIP

The producer sub-processes P1 and P2 performs the
same elementary processing operations but in
opposite direction using pairs of data stored in the
receiver buffer and results communicated by
neighbouring processes. The intermediate results of
these sub-processes are saved in their own buffers
and also communicated to neighbouring processes.
The pseudo-code describing the producer sub-
process P1 is given below:

 WHILE TRUE
 SEQ
 Ch_producer_1[i-1][j] ? Data_pair
 WHILE (Producer_1_buffer is full) OR

 (Receiver_buffer is empty)
 SKIP
 Process the received pair of data
 PAR
 Store the results in buffer
 Ch_producer_1[i][j] ! Result_pair

The consumer sub-process provides the resulting
derivatives Ix, Iy, Ixx and Iyy. The process (i, j) at
differentiation stage computes the derivatives (Iy,
Iyy) for pixel (i, j) and the derivatives (Ix, Ixx) for
pixel (j, i) of the same image. This process is
summarized by the following pseudo-code:

WHILE TRUE
 SEQ
 WHILE (Producer_1_buffer is empty)OR
 (Producer_2_buffer is empty)
 SKIP
 Compute the resulting derivatives
 (Ix,Iy,Ixx,Iyy)

4 Conclusion
In this paper, a parallel algorithm for edge detection
based on Infinite Impulse Response filters is
presented. In particular, a parallel version of the
Infinite size Symmetric Exponential Filter (ISEF)
that is an optimal, computationally efficient,
smoothing filter is developed. The proposed
algorithm uses efficiently all types of potential
parallelism inherent in the low level processing such
as spatial and temporal parallelism and systolism.
The proposed algorithm can be easily used to support
any IIR filters. Although this paper deals with 2-D
edge detection, the proposed algorithm could be
adapted to 3-D edge detection such as Castan’s and
Deriche ’s 3D-filters. A performance evaluation
study of the proposed algorithm is currently under
investigation.

References:
[1] R. Haralick & L. Watson, A facet model for

image data, CGIP, Vol. 15, 1981, pp.113-129.
[2] M. Huckel, An operator which locates edges in

digitized pictures, JACM, Vol. 18, 1971,
pp.113-125.

[3] J. Prewit, Object enhancement and extraction, In:
B. Lipkin and A. Rosenfeld, eds., Picture
processing and psychopictories, New
York,1970, pp.75-149.

[4] T. Poggio, V. Torre & C. Koch, Computational
vision and regularization theory. Nature, 1985,
pp.314-319.

[5] V. Torre & T. Poggio, On edge detection, IEEE
Trans. on PAMI, 8 (2), 1986, pp.147-163.

 [6] R. Deriche, Fast Algorithms for low-level
vision, IEEE Transactions on PAMI, 12 (1),
1990, pp.78-87.

[7] S. Castan, J. Zhao & J. Shen, New edge detection
methods based on exponential filter, Proc. of
10th Int. Conf. on Pattern Recognition, Atlantic
City, NJ (USA), Vol.1, 1990, pp.709-711.

[8] S. Castan, J. Zhao & J. Shen, Optimal filter for
edge detection methods and results, Proc. of
First European Conference on Computer Vision,
Antibes (France), 1990, pp.13-17.

[9] J. Shen & S. Castan, Towards the unification of
band-limited derivative operators for edge
detection, Signal Processing, Vol. 31, 1993,
pp.103-119.

 [10] L. Luque et al, Transputer based system
software, IEEE Workshop on Parallelism &
Distributed Processing, Spain, 1994, pp.536-
543.

[11] X.T. Zhang & D.M. Zhao, A Parallel algorithm
for detecting dominant points on multiple digital
curves, Pattern Recognition, Vol. 30, No. 2,
1997, pp.239-244, Feb. 1997.

[12] P.D. Mackenzie & O.F. Stout. Ultra-fast
expected time parallel algorithms, J. Algorithms,
Vol. 26, 1998, pp.1-33.

[13] L. Prechelt, Efficient parallel execution of
irregular recursive programs, IEEE Trans. On
Parallel and Distributed Systems, Vol.13, No.1,
2002, pp.167-178.

[14] N.S. Sundar et al., Hybrid algorithms for
complete exchange in 2D meshes, IEEE Trans.
On Parallel and Distributed Systems, Vol.12,
No.12, 2001, pp.1201-1218.

[15] Y.Ben-Asher and K. Haber, Parallel solutions of
simple indexed recurrence equations, IEEE
Trans. On Parallel and Distributed Systems,
Vol.12, No.1, 2001, pp.22-37.

[16] A.M. Tyrrell, Parallelisation. IEEE Workshop on
Parallelism & Distributed Processing, Spain, pp
30-31, 1994.

