
Dependable Mobile Agents

ADEL CHERIF and TAKUYA KATAYAMA
School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai Tatsunokuchi 923-1211 Nomi-Gun

JAPAN

Abstract: - The mobile agent programming paradigm offers several advantages for the development of
distributed systems and applications. Mobile agent dependability is a key requirement for the acceptance and
future development and deployment of mobile agents. In this paper, we propose a replication scheme for
mobile agents based on the group concept and associated group communication services. Group
communication has been proposed to support fault tolerance in traditional distributed systems and proved to be
very effective in the design and implementation of fault tolerant and dependable systems. We argue that it is
also attractive for the design and implementation of dependable mobile agents.

Key-Words: - Dependability, Exactly-once Execution property, Mobile Agents, Group communication.

1 Introduction
The ubiquitous use of the network and the Internet
and the increasing interest and adoption of wireless
networking as well as the increasing popularity of
mobile computing devices such as laptops, PDAs
and Palm devices is leading to the establishment of a
new computing environment that is highly dynamic,
heterogeneous, flexible and highly mobile. The
mobile agent paradigm is a versatile and robust
programming paradigm that offers several
advantages for the design and development of
distributed systems and applications deployed on
such distributed computing environment.
 An agent is a software program that is executing
on behalf of its owner. The owner can be either a
user or a software program. A mobile agent is an
agent that can migrate autonomously from node to
node in the distributed system to perform
computation on behalf of its owner. In order for the
mobile agent to execute and run at a node, the
visited node must support an agent execution
environment also called agent system. In the
remainder of this paper, we will refer to such an
execution environment as an agency. An agency
offers access to services and resources that the
mobile agent needs in order to execute. Several
Mobile agent systems have already been proposed in
the literature including Aglets from IBM [1] and
Concordia from Mitsubishi [2]. Some of the
developed systems are commercially distributed
while others are freely distributed on the Internet.
 The very nature of the modern distributed
computing environment makes it highly prone to
failures and recoveries. Failures can lead to the loss

of mobile agents and blocking since no progress can
be achieved until the failed mobile agent recovers.
The crash of the mobile agent itself, or the agency,
or the node on which the mobile agent was
executing can result in the loss of the mobile agent.
Recovery, in the other hand, can lead to mobile
agent duplication, that is, the creation and execution
of two or more instances of the same mobile agent.
In such a case, tasks assigned to the original instance
of the mobile agent might be executed more than
once. For some type of applications, such as for
electronic commerce applications, this clearly
violates the application requirements such as the
exactly-once execution property [8].
 Ensuring mobile agent dependability despite
failures and recoveries is of primary importance for
the acceptance and future development and
deployment of mobile agent based applications. To
provide dependable mobile agent, one must ensure
that despite failures and recoveries, mobile agents
will not be lost and that, when required, the mobile
agent will be executed at most once, that is, it
verifies the exactly-once execution property.
 In the distributed computing environment, it is not
always possible for the owner to distinguish between
the three following cases: The mobile agent has
crashed or is just executing slowly or is temporarily
unreachable due to a communication link failure or
network partition. Thus, the mobile agent owner
cannot reach a decision on the mobile agent status.
This problem is also inherent to traditional
distributed computing. Strategies and techniques
that proved to be efficient in traditional distributed
computing in ensuring system dependability should

also be considered for the implementation of
dependable mobile agents.
 In this paper we present a replication scheme
based on the process group approach [3] and on
group communication [4] for implementing
dependable mobile agents. The proposed replication
scheme prevents blocking and ensures that mobile
agents are not lost as a result of failures. It will also
ensure that, when required, mobile agents will not
violate the exactly-once execution property.
 The remainder of this paper is organized as
follows: Section 2 introduces the related work. The
system, the failure, and the mobile agent execution
models are described in section 3. The proposed
replication scheme is introduced in Section 4.
Finally, section 5 offers some concluding remarks.

2 Related work
An increasing number of research work is being
conducted on developing techniques and approaches
to ensure mobile agents dependability. Some of the
approaches proposed in the literature are based on
checkpointing and recovery [5, 6] while others are
based on replication [7,8,9,10].
 In the checkpointing and recovery techniques, a
copy of the mobile agent is saved in persistent or
stable storage. In case of crash of the agent, the
saved copy is retrieved from storage and the mobile
agent is restarted from the last saved checkpoint. If
the agency or the node fails leading to the crash of
the mobile agent, the mobile agent is also retrieved
from persistent storage and restarted after the node
and/or the agency recovers. Other techniques use a
more elaborate approach where before migrating to
a new node Nc+1 a copy of the mobile agent is saved
at the current node Nc. This copy is on stand-by
mode and acts as a back-up to recover the agent if it
fails during migration or if it fails to restart at the
new node. The migration process can be processed
as a transaction, that is, it is executed atomically
verifying the all-or-nothing property. In case of
failure of the mobile agent, a copy saved at one of
the previous nodes is activated and restart execution.
Some approaches as in [5] maintain these back-up
copies until the agent completes its tasks and then
garbage collect them. Other approaches as in [6],
delete the copy after the next migration, that is,
when the mobile agent successfully migrates form
node Nc+1 to a new node Nc+2.The copy saved at
node Nc is garbage collected.
 Some of the proposed checkpointing and recovery
techniques do not prevent blocking and most do not
prevent mobile agent duplication and thus can lead

to the violation of the exactly-once execution
property.
 Several replication schemes [7,8,9,10] have been
proposed in the literature to implement dependable
mobile agents.
 In [7], the author uses replication and voting to
mask the effects of failures. The author focuses
mainly on security and on protecting the mobile
agents against malicious hosts. This work is based
on the state machine approach [11]. The
performance cost of such approach is very high.
 In [8], the authors present a fault tolerant protocol
that ensure the exactly-once execution of agents.
This work is based on the primary/back-up approach
[12]. In the proposed model, agents are replicated
and one replica is called the worker while other
replicas are called observers. In this approach, an
agent executes a single atomic transaction at each
agency it visits. A voting protocol integrated with
the two-phase commit protocol is used by the
worker to commit the transaction. In this approach,
the failure of a single node can lead to blocking.
 In [9], the authors present a variation of the
protocol introduced in [8] to support the execution
of more than a single transaction at the visited
agency. The authors assume a fail-silent failure
model and they also base their approach on the
primary/back-up approach. The authors assume
reliable communication channels and use a three-
phase commit protocol combined with the voting
protocol in order to alleviate the possibility of
blocking due to a failure of a single node. The three-
phase commit protocol requires extra rounds of
communication between the worker and the
observers and the protocol can block if the
communication channels are unreliable.
 In [10], an agent-dependent approach is proposed.
In the agent-dependent approach, and unlike agency-
dependent approaches where the fault tolerance
protocols are supported at the agency and are
integrated in the agency itself, the fault-tolerance
mechanisms are implemented at the mobile agents.
In the proposed approach, the mobile agent is
replicated on a number of nodes and the fault
tolerant execution of the mobile agent leads to a
sequence of agreement problems between the agent
replicas. An instance of the DIV Consensus
algorithm is then executed at each execution stage to
solve the agreement problem. The agent-dependent
approach increases the overhead associated with the
agent migration since the code and data used for the
FT protocols are part of the agent. Furthermore,
solving the consensus problem at each execution
stage has a high performance cost. Finally, such
agent-dependent approaches do not scale nicely.

3 System Model
We consider a distributed asynchronous system
consisting of a number of nodes connected by a
communication network as shown in Fig.1. In an
asynchronous system no assumptions can be made
on the communication delays or processing speeds.
In the considered model, processes communicate
solely by means of message passing.

3.1 Failure Model
We assume that the communication network may
partition. A network partition occurs when some
nodes in the system can communicate with each
other but cannot communicate with other nodes in
the system. We assume that messages and agents are
not corrupted during their transmission on the
communication network.
 The failure model supported by the proposed
protocol is the crash failure model for mobile agents,
agencies and nodes. In the crash failure model, it is
assumed that mobile agents and/or agencies and/or
nodes behave correctly or fail by simply halting
without producing incorrect results.

Fig.1, System and Agent Execution Models

3.2 The Mobile Agent Execution Model
Each node in the system hosts one or more agencies.
Different type of agencies (Agi) can coexist at the
same node (e.g., Aglet and Concordia agencies). A
mobile agent is initially created at a node called the
source node. It then migrates from node to node in
the system to perform its assigned tasks until it
reaches its final node called the destination node as
shown in Fig.1. The destination node can be the
same as the source node. Each node visited by the
mobile agent must host an agency of the same type
than the mobile agent. That is, an Aglet mobile

agent can only be executed by the agency of type
Aglet.
 A mobile agent (a) is assigned a number of tasks
n that it has to perform. In the remainder of this
paper, we will denote a mobile agent (a) that
performed a number of tasks i where (0 ≤ i ≤ n) as
ai. In the considered model a mobile agent can
execute any number of tasks at each node it visits,
then it eventually migrates to another node in the
system. The agency executes the mobile agent
resulting in a new internal state for the mobile agent.
Some of the executed tasks might change the state at
the visited node. For example, a mobile agent that
simply reads some information from a database
server will not change the state of the server.
However, a mobile agent that performs a money
withdraw operation from a bank server that is
resident at the visited node clearly changes the state
of the server. Such tasks must be executed exactly
once by the mobile agent, we call such tasks critical
tasks.

4 The Proposed Replication Scheme
In order to implement dependable mobile agents,
there is a need to add some form of redundancy into
the system. Replication has proved to be one of the
most powerful techniques to provide fault tolerance
and system dependability. The Process group
concept and group communication services also
proved to be very useful in designing and
implementing dependable distributed systems. The
proposed replication scheme is based on passive
replication also known as the primary/Backup
approach and on group communication services.

4.1 Replicated Mobile Agent Execution

Model
When first created, the mobile agent is replicated
and a number of identical copies of the mobile agent
are then created. Each instance of the replicated
mobile agent is called a replica. A new group with a
system-wide unique identifier is then created and all
replicas are joined into the group. A ranking is
assigned to each replica in the group with the
original mobile agent having the lowest ranking. A
mobile agent a with rank j is denoted by . A
mobile agent a with rank j which state reflects the
execution of i tasks is denoted by . The mobile
agent with the lowest ranking in a group is called the
primary agent. Other replicas are called back-up
agents. After all replicas are joined into the group,

 Ag 1

Source Node

 Ag 2

 a0 bj

Comm. Network /
 Internet

Nodes in
the system

 a0
an

Source Node Destination
 Node

 a1 a3

 a j

 ai
 j

they are dispatched to different nodes in the system
as shown in Fig. 2.

Fig.2, Replicated Mobile Agent Execution
and Migration Model

There is only one primary agent at any time in any
group. The primary agent is the only active mobile
agent in its group. That is, it is the only mobile agent
that executes the tasks assigned by the owner. Other
back-up agents are in stand-by mode. All members
of a particular group are located at different nodes.
When the primary agent migrates from a node to
another in the system, back-up agents may also
migrate to different nodes in the system in order for
example to minimize communication costs and thus
improve system performance.

4.2 The Replication Scheme
In the proposed replication scheme, A membership
service manages all groups in the system. The
membership service continuously monitors group
members. All members of a group have the same
view on their group membership provided by the
membership service.
 In case of failure of a group member, the failing
member is removed from the group and a new group
view is generated. If the failing member is a back-up
agent, depending on the number of replicas in the
group a new back-up agent might be created in order
to maintain the required level of replication. To
create a new back-up agent, one of the back-up
agents is cloned and the new back-up agent is
dispatched to another node in the system. If the
failing agent is the primary agent, a new group view
excluding the failing member is also generated and

the agent with the lowest ranking becomes the new
primary agent and starts execution.
 In case of network partition, a group may be
divided into a number of subgroups. We assume that
there always exists a subgroup that includes at least
half of the members of the partitioned group. The
replication protocol ensures progress only in one
connected group, called the primary group as shown
in Fig.3. The primary group consists of the group
with a number of agents that is at least equal to half
the number of agents included in the previous
primary group. If a group is partitioned into two
groups with an equal number of agents, then the
group including the primary agent from the previous
primary group is considered as the new primary
group. Agents in other minority groups are simply
blocked and garbage collected. If the primary agent
is a member of a minority group, it is also blocked
and one of the back-up agents in the new primary
group will become the new primary agent.

Fig.3, Primary Group Approach Following
a Network Partition

 The state of the back-up agents is updated
periodically by the primary agent or when the
primary agent needs to execute a critical task. The
execution of a critical task by the primary agent
modifies the state of the node on which the primary
agent is executing. This task is executed as a
transaction and the protocol must guarantee that this

 Migrate

 Ag1

Node N1

 a1
0

 Ag1

Node N2

 a0 1

 Ag1

Node N3

 a0 2

Group Ga

Replicate
and join
group Ga

Source
Node N1

 Ag1

Source
Node N1

 a0
0

 a0
1

 a0
2

 Migrate Ag1

Node Nq

 ai
0

 Ag1

Node Ns

 ak 1

 Ag1

Node Nt

 ak 2

Group Ga

Destination
 Node Nr

 Ag1

 an
0

 Ag1

 a0
0

 Migrate Migrate

 Migrate

 Ag1

Node N1

 a1
0

 Ag1

Node N2

 a0 1

 Ag1

Node N3

 a0 2

Group Ga

 Ag1

Node N4

 a0 3

 Ag1

Node N5

 a0 4

Network
Partition

 Ag1

Node N1

 a1
0

 Ag1

Node N2

 a0 1

 Ag1

Node N3

 a0 2

 Ag1

Node N4

 a0 3

 Ag1

Node N5

 a0 4

Group Ga”

Group Ga’

Primary
Agent

New
Primary

Agent

Primary
Group

Discarded
Group

execution will occur at most once despite failures
and recoveries. To do so, all group members
participate in a two-phase commit protocol to
commit the transaction. The protocol avoids
blocking by using the membership service to
continuously monitor the agent group membership.
In case of failure of one of the members, the
transaction is aborted and the commit protocol is
restarted again possibly after a group
reconfiguration is performed and a new group
membership view is generated by the membership
service.
 Once the transaction is committed the state of all
group members will reflect the execution of the
critical task. As a result, in case of failure of the
primary agent, the new primary agent will not
execute the same task again. For idem-potent tasks,
that is, tasks that can be executed more than once,
there is no need to execute the commit protocol. The
primary agent periodically updates the state of the
back-ups.

4.3 System Support for Replication
To support the proposed replication scheme, a
runtime system consisting of a replication manager
and a group communication manager is resident at
each node in the system. The replication manager
supports the mobile agent group paradigm and
provides common group operations such as create,
join and leave group. It is responsible for creating
back-up agents to maintain the required level of
replication and to manage these agents. It also
implements a two-phase commit protocol.
 The replication manager uses the services
provided by the group communication manager to
perform its operations. The group communication
manager offers a membership service and an atomic
multicast service. The membership service
maintains information on the groups existing in the
system and their members. It continuously monitors
the members of the mobile agent group and notifies
the replication manager of any failures. The group
communication service provides a communication
primitive that guarantees the delivery of messages in
the same order at all group members.

5 Conclusion
We proposed a replication scheme based on group
communication for the design and implementation
of dependable mobile agents. The proposed
replication scheme prevents the blocking of mobile
agents following the crash of the mobile agent itself

or the agency or the node on which it is executing. It
also ensures the exactly once execution property that
is required for some type of applications including
electronic commerce.

References:
[1] Programming and deploying Java Mobile

Agents with Aglets. Danny Lange and Mitsuru
Oshima, Addison Wesley, 1998.

[2] D.Wong, N.Paciorek, T.Walsh, J.DiCelie,
M.Young, B.Peet. Concordia: An Infrastructure
for Collaborating Mobile Agents. LNCS,
Volume 1219, Springer, 1997.

[3] K.P.Birman. The Process Group Approach to
Reliable Distributed Computing. In
Communications of the ACM, No.12, Vol.36,
pp:37-53, 1993.

[4] F.Cristian. Synchronous and Asynchronous
Group Communication. In Communications of
the ACM, No.4, Vol.39, pp:88-97, 1996.

[5] L.Silva, V.Batista, and J.G.Silva. Fault-Tolerant
Execution of Mobile Agents. In Proc. of the
International Conference on Dependable
Systems and Networks, pp:135-143, 2000.

[6] D. Johansen, R.van Renessee, and F. Schneider.
Operating System Support for Mobile Agents.
In Proceedings of the 5th IEEE Workshop on
Hot Topics in Operating Systems.

 [7] F.B. Schneider. Towards Fault-tolerant and
Secure Agentry. LNCS, Volume 1320, Springer,
1997.

[8] M.Straber, K.Rothermel, C.Maihofer. Providing
Reliable Agents for Electronic Commerce.
LNCS, Volume 1402, Springer, 1998.

[9] F.A.Silva and R.Popescu-Zeletin. An Approach
for Providing Mobile Agent Fault Tolerance.
LNCS, Volume 1477, Springer, 1998.

[10] S.Pleisch and A. Schiper. FATOMAS: A Fault-
Tolerant Mobile Agent System Based on the
Agent-Dependent Approach. In Proc. of the
International Conference on Dependable
Systems and Networks, 2001.

[11] F.B.Schneider. Replication Management Using
the State-Machine Approach. Distributed
Systems, Sape Mullender, editor, pp:169-197,
ACM Press, 1993.

[12] N.Budhiraja, K.Marzullo, F.B.Schneider, and
S.Toueg. The Primary-Backup approach.
Distributed Systems, Sape Mullender, editor,
pp:199-216, ACM Press, 1993.

