
MONIL, the Metadata and Object Integration Language

M. LARRE, J. TORRES, E. MORALES, S. TORRES
Department of Computer Science

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Cuernavaca

Paseo de la Reforma No. 182-A Lomas de Cuernavaca
MEXICO

,

Abstract: - Data integration is the process of extracting and mergind data from multiple heterogeneous sources to
be loaded into an integrated information resource. Developing tools for effectively exploiting source data has
became a challenging issue with the appereance of the Data Warehouse Technology. This paper presents the
MONIL Language as an alternative to solve data integration problems. The MONIL main features are described
using a simple case of study. These features are: an algorith to automatically suggest integration correspondences
between source and target data, a metamodel to store integration information, and a set of built-in conversion
functions. MONIL Language is embedded in a semiautomatic framework with a set of tools to develop, store and
execute integration programs following a simple integration process. A MONIL program execution generates
Java language statements and JDBC commands. Integration cases have been successfully solved using MONIL
language.

Key-Words: - data integration, databases, metadata, programming language.

1 Introduction
Data Integration is defined as the process of
extracting, transforming and merging data from
heterogeneous sources into an integrated information
resource.
 An integration system architecture ([1], [2]) can be
defined in terms of wrappers and mediators.
Wrappers extract data from sources, and mediators
transform, merge and load data into a specific target.
 Data integration is a complex problem since
semantic and structural heterogeneity’s between data
exist. Structural differences come from the
implementation details, e.g., data models and
programming languages. Semantic heterogeneity
occurs for example, when different names are used to
represent the same object, or when same names
represent different objects [3].
 Two basic approaches have been proposed in the
literature to solve the data integration problem:
structural ([4], [5]) which uses a query-by-query
approach, and the semantic approach ([7], [8]) which
considers the conceptual descriptions of the involved
sources.
 In recent data integration systems, the user models
each data source as a virtual relation called mediated
schema. The virtual relation is built using integrated
virtual views ([9], [10]) or materialized views ([11],
[12], [13], [14]) and the user poses queries in terms of
the mediated schema. In addition to the mediated
schema, the model has a set of source descriptions
that specify the mapping between the mediated

schema and each source schema. Two basic
approaches for specifying source descriptions are: the
Global-As-View (GAV) approach ([16], [17], [18])
which uses rules to define the relations in terms of
specific source data, and the Local-As-View (LAV)
approach ([19], [20], [21], [23], [24]) where the
source relations are defined as expressions over the
relations in the mediate schema.
 With the appearance of Data Warehouse
technology ([25], [26]), where inconsistency and
incompatibility problems need to be solved when data
passes from Legacy Systems to Data Warehouses, the
developing of efficient tools for solving data
integration problems has become a challenging issue
for the computer scientists.
 This paper describes a programming language
called MONIL1 as an alternative for solving
integration problems. MONIL is an expressive
language based on metadata and embedded in a
dedicated framework which follows a 3-step process
to solve data integration problems. MONIL formal
definition [27] has 263 basic production rules and it is
based on a context free grammar [29].
 MONIL Language is a hybrid approach that
merges relevant concepts from the semantic and
structural approaches, e.g., (a) the integration
metamodel concept (semantic approach) to manage
the integration process information, (b) direct

1 Metadata and Object iNtegratIon
Language

references to sources and targets (structural approach)
to easily extract and load data, and (c) stored
descriptions for sources and targets units
(materialized views) to store the required metadata
from each participant element.

The paper is organized as follows. Section 1
describes the process and solution of an integration
problem using the MONIL approach. This section
also describes MONIL features. Section 2 contains
some conclusions and future work.

Figure 1. Sources and target conceptual
descriptions.

2 A Motivating Example

This section gives an overview of the MONIL
approach using a representative integration problem.
The integration problem consists in solving
heterogeneities between three entities (two sources
and one target) from one relational database [28]. The
problem will be called "the part problem" since it
involves information (identification and color) from
"parts" of a warehouse.

As an introduction to the integration case,
Figure 1 gives the conceptual description of the
elements: (a) source entity S1 has attributes partId
and colorId, (b) source entity S2 has attributes part

and colordesc, and (c) target entity T1 has attributes
pId and color.

The MONIL approach provides a solution for
"the part problem" using its framework [27] and its 3-
step integration process:

1. The Integration Correspondence Schema
Definition.

2. The Programs Generation.
3. The Programs Execution.

2.1 The Integration
Correspondence Schema
Definition

The correspondence schema
establishes the relationship between
source data and target data and it
must be defined by the user. Figure
Figure 2 explains graphically a
correspondence schema: partId
(attribute from S1) and part
(attribute from S2) are sources for
the target attribute pId, and the
concatenation of colorId from S1
and colordesc from S2 provides
source data for target attribute
color.
The MONIL framework offers
easy-to-use graphic interfaces to
assist the user during the
correspondence schema definition.

F
i
g
u
r
e

Figure 2. The Integration
Correspondence Schema

Definition

color identifier, colorId
99 0 ≤ ≤ colorId

part identifier, unique value, not null,
 valid format: 99-99

(digit digit-digit digit) PARTID

Source Entity S 1

Source Entity S 2
part identifier, unique value, not null,

 valid format: 9999
 (digit digit digit digit) part

color description, no
restriction colordesc

Target Entity T 1

part identifier, unique value,
not null,
 valid format:
9999 (digit digit digit digit

)
pId

color specification,
composed by colorId +
colordesc
color

pId

color

partId

colorId

S1

part

colordesc

S2

T1

partId

partcolorId

co
lo

rd
es

c
color+

colorcolordesccolorId →+
(automatically suggested by the MONIL Framework)

pId part

pIdpartId

→
→

(automatically suggested by MONIL Framework)

PivoteS1=partId

PivoteS2=part

PivoteT1=pId

Figure 3 shows part of the process of definition of the
integration correspondences. The functions editor, for
example, assists the user to define operations to

transform the source attributes and store these as part
of the correspondence schema.

Figure 3. Graphic tools for the correspondence schema definition.

The MONIL framework also includes an algorithm
called Integration Correspondence Suggestion or ICS
to automatically suggest to the user some integration
correspondences between source and target data. A
previous version of ICS was defined in [30] and is
based on metadata and the Semantic Proximity
Taxonomy[31]. This taxonomy classifies the
semantic proximity level between data. ICS searches
for source and target elements which are semantically
related. For "the parts problem", ICS automatically
suggests all the correspondences needed to solve this
integration case, then the user only has to accept
these integration suggestions. This MONIL feature
minimizes the user effort during the definition of the
integration correspondences. To preserve data
integrity during the integration process, the
integration correspondence schema requires the
definition of representative attributes, called pivots,
for each source-target relationship. Pivots are
automatically suggested by the ICS for every
integration case and represent the relations between
sources and targets. Finally, when the user finishes
with the correspondence schema definition, it should
be stored into the Integration Metamodel [27] or IM

which is the MONIL general repository that stores all
the information used for the integration process.

2.2 Programs Generation

Figure 4 shows the MONIL program called
"POLITET1" that specifies the required integration
operations to solve the "the parts problem". The
program was generated automatically using the stored
correspondence schema definition of Figure Figure 2.

Besides the automatic process to generate MONIL
programs, the framework offers text edition tools for users
that prefer typing (manually) their programs. For those
programs that were not automatically generated, the
framework includes a compiler to make a complete code
analysis to find and correct syntactic and semantic errors
Every MONIL program has a 2-section structure:
heading and body. The program's heading describes
every element that participate in the integration
process. These elements are called Integration Units
or IU. MONIL distinguishes two IU categories: High
Level Units and Specific Units and uses two different
high level and specific units: source units which are
data providers and target units which are data
receivers.

Figure 4. The MONIL program
POLITE1 automatically generated using

a correspondence schema definition

In the "POLITET1" program code (Figure 4),
S1 and S2 are the high level source units; T1 is the
high level target unit, partId, colorId, part and
colordesc are the specific source units; and pId and
color are the specific target units. The program's
body describes the required process or the Integration
Procedure to transform source data into target data.

For "the parts problem", two different
integration processes must be done to solve the
problem:

1. The integration process for the
correspondences partId->pId and part->pId is: (a)
Extract source attributes partId and part, (b) Modify
the structure (format) of the source attributes, and (c)
Load extracted data into the target attribute pId.

2. The integration process for the
correspondences colorId+colordesc->color is: (a)
Extract separately source attributes, (b) Modify the
source attributes formats (e.g., character "-" is
removed from attribute colordesc), (c) Concat
attributes colorId and colordesc, and (d) Load
resultant data into target attribute color.

The operators proposed by the MONIL
Language to transform and manipulate source and
target data are the Conversion Functions or CF. The
CF format is given by:

FuncName[parameter1]...[parameterN](data)

where N represents the total number of parameters
that each conversion function requires, and data, is
the specific integration unit that is modified by
FuncName.

In Figure 4, some of the used CF are: Load,
Extract, Removeif, TruncC, ToChar, etc. Currently,
MONIL Language definition has 50 conversion
functions available classified into 5 categories: (a)
Text/String, (b) Extract/Load, (c) Structure, d)
Numeric, and (d) Date/Time.

Figure 5. Java Language code and
JDBC commands generated during the

execution of the POLITE1 program.

The program generation phase concludes when
the new program is stored into the IM to be available
for the execution phase. A stored program could be
executed every time that is required by the user.

Heading Section

Body Section

Target high level unit

Source high level
units

Source specific
units

Target specific units

Conversion Functions

Program's name

2.3 Programs Execution

Figure 6. Elements of the "parts
problem" before and after MONIL
Program execution.

The MONIL program execution is the last step for
the integration process, and it is performed by a
framework tool called the Integrator Agent or IAg,
which searches and executes the MONIL programs
selected by the users translating them into both Java
language and JDBC technology [32], [33]. Figure 5
shows a small part of the code generated when the
program "POLITET1" was executed.

The IAg execution ends successfully, when
every defined source data is transformed and loaded
into its related target data. Figure 6 shows "the parts
problem" data participants before and after the
program "POLITE" execution: (a) the target unit T1
before the "POLITET1" execution, and (b) the target
unit T1 after the integration program execution. Both
data sources S1 and S2, stay without changes during
the integration process.

3. Conclusions and Future Work

A Data Integration Language called MONIL was
presented as an alternative for solving data
integration problems. MONIL is an expressive
programming language embedded in a flexible
framework in which data integration operations can
be easily expressed. MONIL Language has been

successfully tested using multiple sources with
different heterogeneity levels.

The main contributions of MONIL Language
are:

v A formal Programming Language
Definition based on Metadata to
express the data integration process.

v An algorithm to automatically
suggest integration correspondence
between source and target data.

v A MONIL Framework specially
designed to develop, store and
execute MONIL programs.

v A set of built-in Conversion
Functions that supports: (a)
manipulation of source data units,
and (b) alterations of the structure
of target data units.

Currently, our work is
focussed on extending the scope of
the integration suggestion
algorithm to automatize many other
integration process activities.

References:
 [1] Ullman, J. Information Integration using Local

Views. In Proc. of The 6th Int. Conf. on Database
Theory (ICDT'97) Vol. 1186 of Lecture Notes in
Computer Science Springer-Verlang, (1997) pp.
XIX-XL.

 [2] Wiederhold, G. Mediators in the Architecture of
the Future Information Systems. IEEE Computer,
25(3), (1992) 38-49.

 [3] Kim, W., Choi, I., Gala, S. & Scheevel, M.
(1993). On Resolving Schematic Heterogeneity in
Multidatabase Systems. Distributed and Parallel
Databases.

 [4] Dayal, U. & Hwuang, H. (1986). View
Definition and Generalization for Database
Integration in a Multidatabase Systemas. Proc.
IEEE Workshop on Object-Oriented DBMS.

[5] Chawathe, S., Garcia-Molina, H., Hammer, J.,
Ireland, K., Papakonstantinou, Y., Ullman
J.,Widom J.: The TSIMMIS Project: Integration
of Heterogeneous Information Sources. In Proc of
IPSJ Conference, (1994)7-18.

[7] Bergamaschi, S., Castano, S., Beneventano D. &
Vincini, M. (2001). Semantic Integration of
Heterogeneous Information Sources. Special issue
on Intelligent Information Integration Data and
Knowledge Engineering, 36(1), 215-249.

 [8] Bergamaschi, S., Castano, S., De Capitani di
Vimercati S., Montanari S. & Vincini M. (2001).
A Semantic Approach to Information Integration:

Target T 1
BEFORE
program

execution

Source S1 Source S2

Target T 1
AFTER

program
execution

The MOMIS Project. Special Issue on Intelligent
Information Integration Data and Knowledge
Engineering.36(1),2-15-249.

[9] Litwin, W., Mark, L. & Roussopolos, N. 1990.
Interoperatibility of Multiple Autonomous
Databases. ACM Computing Surveys, 22(3), 267-
293.

[10] Arens, Y., Chee, C.Y., Hsu, C.N. & Knoblock
C.A. 1993. Retrieving and Integrating Data from
Multiple Information Surces. Int. Journal of
Intelligent and Cooperative Information Systems.
2(2), 127-158.

[11] Lu, J.J., Moerkotte, G., Shue, J. &
Subrahmanian, V.S. 1995. Efficient Maintenance
of Materizlized Mediated Views. Proc. ACM
Sigmod Symp. on Management of Data, 340-351.

 [12] Zhuge, Y., Garcia-Mollina, H., Widom, J. &
Hammer J. 1995. View Maintenance in a
Warehousing Environment. ACM Sigmod Symp.
on The Management of Data, 316-327.

[13] Zhou, G., Hull, R., & King, R. 1996 Generating
Data Integration Mediators that use
Materialization. Journal of Intelligent Information
Systems 3:2/3, Kluwer Academic Publishers,
May, 199-221.

[14] Gupta, H. & Mumick, I.S. (1999). Selection of
Views to Materialize under a Maintenance-Time
constraint. International Conference on Database
Theory.

[16] Papakonstantinou, Y., Garcia-Molina,
H.,Widom J.: Object Exchange Across
Heterogeneous Information Sources, IEEE
International Conference on Data Engineering
(1995) 251-260.

[17] Adali, S., Candan, K., Papakonstantinou,
Y.,Subrahmanian, V.: Query Catching and
Optimization in Distributed Mediator Systems. In
Proc. of ACM SIGMOD Conf. On Management of
Data (1996).

[18] Garcia-Molina, H., Papakonstantinou, Y.,
Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. &
Widom, J. (1997) The TSIMMIS Project:
Integration Of Heterogeneous Information
Sources. Jornal of Intelligent Information
Systems, 8(2),117-132.

[19] Jarke, M., Jeusfeld, M.A., Quix, C. &
Vassiliadis, P. 1998 Architecture and Quality in
Data Warehouses. Proc. of the 10th conf. On
Advanced Information Systems Engineering
(CAiSE'98), 1413, 93-113.

[20] Bergamaschi, S., Castano, S., Vincini, M.,
Beneventano D. (1999) Intelligent Techniques for
the Extraction and Integration of Heterogeneous
Information. Workshop on Intelligent Information
Integration, (IJCAI99) .

[21] Calvanese, D., De Giacomo, G., Lenzerini, M.,
Nardi, D., Rosati R.: A Principled Approach to
Data Integration and Reconciliation in Data
Warehousing, In Proc. of the International
Workshop on Design and Management of Data
Warehouses (DMDW'99) Vol. 19 (1999).

[22] Friedman, M., Mavy, A., & Millstein, T. (1999).
Navigational plans for Data Integration. 16th
National Conference on Artificial Intelligence
(AAAI'99).

[23] Jarke, M., Quix, C., Calvanese, D., Lenzerini,
M., Franconi, E., Ligoudistiano, S., Vassiliadis,
P., Vassiliou Y. Concept based Design of Data
Warehouses: The DWQ Demostrators, in Proc. of
the ACM SIGMOD Int. Conf. On Management of
Data (2000) 591.

[24] Beneventano, D., Bergamaschi, S., Guerra, F. &
Vincini, M. 2001. The MONIS Project Approach
to Information Integration. IEEE and AAAI
International Conference on Enterprise
Information Systems (ICEIS01).

[25] Kimball, Ralph.: The Data Warehouse Toolkit.
2nd. edn. John Wily and Sons, Inc. 1996.

[26] Inmon, W.H., Terdeman, R.H. & Imhoff,
Claudia. 2000. Exploration Warehousing Turing
Business into Business Oportunity. John Wiley
and Sons, Inc.

[27] Larre, M., Torres-Jiménez J., & Morales, E..
2001 Data Integration with MONIL, Metadata
and Correspondence Suggestions. 3er. Encuentro
Internacional de Ciencias de la Computación
(ENC'01), (2)623-632.

[28] Date, C. D. An Introduction to the Database
Systems (Introduction to Database Systems 7th
Edition). Addison-Wesley Pub. Co. 1999.

[29] Hopcroft, J., Ullma, J.: Introduction to Automata
Theory, Languages and Computation. Addison-
Wesley Pub. Co. 2^{nd} Edition (2000).

[30] Larre, M., Torres, S., Torres, J., Morales, E.
(2000). Un Algoritmo para la Integracion de
Datos basado en el Descubrimiento de
Relaciones. En Procs. del 7° Congreso
Internacional de Investigaciones en Ciencias
Computacionales CIIC00 263-274.

 [31] Kashyap, V., Sheth, A. Schema
Correspondences between Objects with Semantic
Proximity. Technical Report DCS-TR-301,
Department of Computer Science, Rutgers
University (1993).

[32] Reese, George. 1997. Database Programming
with JDBC and Java. 2nd. Edition, O'Reilly
Associates.

[33] White, S., Fisher, M., Cattel, R., Hamilton, G.,
Hapner M.: JDBC API Tutorial and Reference,
Second Edition. Addison-Wesley, Pub. Co.1999.

