
Genetic Algorithm to Compute Fuzzy FS-Testors

FRANCISCO MARTINEZ1, GUILLERMO SANCHEZ2, BONIFACIO RUGERIO3

1Departamento de Ciencias Computacionales
Instituto Nacional de Astrofísica, Optica y Electrónica

2Centro de Investigación en Tecnologías de Información y Sistemas
Universidad Autónoma del Estado de Hidalgo

3Centro de Investigación en Computación
Instituto Politécnico Nacional

MEXICO

Abstract: - In this paper, a genetic algorithm to compute sets of attributes, which maintain similarity between
objects in a same class, and at same time, these sets of attributes distinguish objects in a class of objects in the
other classes (FS-testors), is presented. Since the computational complexity to compute fuzzy FS-testors is
exponential, our algorithm appear as an alternative to solve practical problems of classification or feature
selection. The application of the algorithm to a set of objects in a standard public database is shown.

Key-Words: - FS-Testors, Testors, Genetic Algorithm, Feature Selection

1 Introduction
The testor concept grew out related to the fault
functions in electric circuits; these functions
describe the behavior of a circuit with a certain fault
[1]. The first formulation of testor concept,
connected to Pattern Recognition to solve
classification problems in Geology was introduced
by Dmitriev et. al 1966 [2]. A testor in its more
simple form is a set of attributes, which does not
confuse objects belonging to different classes [3, 4].
In this definition and its proposed extensions the
implicit similarity functions to compare objects are
Boolean. Alternatively, in those cases where the
function is not Boolean, it is assumed that the image
of the similarity function can be divided in two
disjoint sets. The set of values where the objects are
similar and the set where them are dissimilar.
Recently, the FS-testor concept for any similarity
function was introduced [5,6]. This concept has as
characteristic that the comparison function between
objects can be anyone. In this new concept only is
assumed that the comparison between r-tuples of
membership to the classes is computed with a
Boolean function, i.e., given a pair of objects,
concerning FS-testor definition, both objects are in a
same class or in different classes.
Therefore, a set of attributes is a FS-testor if the
objects in different classes are low similar (the set of
attributes does not confuse objects belonging to

different classes), and at same time, objects into the
same class are very similar. In this paper we are
interested in compute those sets of attributes, which
satisfy the definition of FS-testor in certain degree
(fuzzy FS-testors).
On the other hand, the computational complexity to
compute fuzzy FS-testors in a training sample
(grouped in classes) depends exponentially of the
amount of attributes used to describe the objects. If
the amount of attributes is not very great, (more than
30 attributes, for example) the time required to
compute the fuzzy FS-testors may be considerable.
This situation diminishes the applicability of fuzzy
FS-testors to solve practical problems of
classification or feature selection.
The genetic algorithms are optimization and random
search techniques guided by genetic and natural
evolution principles, which can help us to solve the
problem of compute fuzzy FS-testors in less time.
These algorithms are processes of efficient search,
robust, which obtain solutions near to the optimum
[7,8].
In this paper, a genetic algorithm to compute fuzzy
FS-testors will be presented. This algorithm is the
first proposed to compute fuzzy FS-testors.

2 Similarity Functions
Let U be a finite universe of objects.

Let R={x1,...,xn} the set of attributes which describe
the elements of U, i.e., for each element Oj∈U we
can assign a description as the n-tuple
I(Oj)=(x1(Oj),...,xn(Oj)). Let Mp the set of admissible
values for xp, p=1,...,n, i.e., xp(Os)∈Mp, s=1,...,m.
Definition Let T= () (){ }psTpspTp xxxx µµ |,...,| 11 a

fuzzy subset of R. A subdescription or partial
description of Oj in terms of the attributes in T is the
s-tuple

() ()() () ()()()psTjpspTjpT xOxxOxOjI µµ ,,...,,)(11/ = .

Definition Let Γ be a similarity function that
assigns to each pair of subdescriptions (in terms of
attributes in the support of the fuzzy set T) the value

() ()()jTiT OIOI // ,Γ . This value represents the

similarity in terms of the membership degree to T,

i.e., () ()[] VTATA

T
RT

psp →××Γ

∅≠
⊆
U 2

1 ...: , where

() (){ }()phTphph xMTA µ×= , h=1,...,s. Also Γ satisfy

the following:
1.-Symmetry: () ()()jTiT OIOI // ,Γ = () ()()iTjT OIOI // ,Γ .

2.-Concordance with partial evaluations: Let
T1,T2,...,Ts, fuzzy subsets of R (non empty subsets)
such that
if ∀h, l=1,2,...,s, l≠h, sopTh ∩ sopT1=∅

() ()()jTiT OIOI
11 // ,Γ ≤ () ()()hTgT OIOI 1// ,

1
Γ …

() ()()jTiT OIOI
ss // ,Γ ≤ () ()()hTgT OIOI

ss // ,Γ

then, if U
s

u uTT
1=

= we have that

() ()()jTiT OIOI // ,Γ ≤ () ()()hTgT OIOI // ,Γ ; where ≤
denotes “less or equal to” in the order defined for V.
3.-Maximum similarity:
a)∀Oi ∈U and ∀T⊆R

() ()() () ()()iTiTjTiT
mj

OIOIOIOI ////
,...,1

,,max Γ=Γ
=

b)∀T1, T2⊆R, ∀ Oi ∈U () ()()iTiT OIOI
11 // ,Γ =

() ()()iTiT OIOI
22 // ,Γ

c)∀T⊆R and ∀Oi, Oj ∈U () ()()iTiT OIOI // ,Γ =
() ()()jTjT OIOI // ,Γ

There are many cases where the similarity function
is defined using a comparison criteria for each
attribute.
Definition A comparison criterion for the attribute
xi∈R is a function Ci:Mi×Mi→Vi, where ∀i Vi is a
totally ordered set, this function give us the
similarity degree between a pair of admissible
values for xi.
Here has been introduced the general formulation
for Γ, however in those cases where the function is

defined for crisp subsets of attributes, the
membership degree may be ignored in the analytic
expressions.

3 Fuzzy FS-Testors
Let a supervised classification problem with m
objects O1,...,Om described through n attributes
x1,...,xn and distributed in q classes K1,...,Kq. This
information is represented in the learning matrix LM
(see table 1), where ()jOα = () ()()jqj OO αα ,...,1 is

denominated q-tuple of membership to the classes
and ()jh Oα is the membership degree of Oj to Kh.

Let R*⊆R; v a function to compare q-tuples of
membership to the classes, v:[0,1]×[0,1]→V’; and
D’ the subset of V’ where the q-tuples of
membership are considered similar.
Definition T⊆R, is a FS-differentiater set of
attributes for LM with respect to v, D’, R* and Γ iff
∀Oi, Oj ∈LM [v(()iOα , ()jOα)∉D’] ⇒

[() ()()jTiT OIOI // ,Γ ≤ () ()()jRiR
OIOI ** //

,Γ]

(differentiating condition).

x1 . . . xn α1 . . . αq

O1 x1(O1) . . . xn(O1) α1(O1) . . . αq(O1)
.
.
.

.

.

.

.

.

.
Om x1(Om) . . . xn(Om) α1(Om) . . . αq(Om)

Table 1. Learning Matrix LM.

This definition may be interpreted as follows: T is a
FS-differentiater set of attributes for LM with
respect to v, D’, R* and Γ, if T distinguishes to each
pair of objects with different q-tuples of
membership (in different classes) non-worse than
R*. In other words, the similarity considering only
the attributes in T for any pair of objects with
different q-tuples of membership is less or equal
than the similarity considering the attributes in R*.
The FS-differentiater set of attributes definition
preserves the essence of the classical testor
definition, i.e., the set of attributes keeps or
improves the capability of distinguishing objects
against a given reference set. In the case of classical
testors, the reference set is R, because the used
similarity function (matching function) has the
property that when we reduce the amount of
attributes, the similarity is preserved or it increases
but never decreases. However there are similarity
functions, which do not have this property so

theoretically, is very important to consider other
reference sets.
In the analysis of the informational properties for a
set of attributes is very important not only take
account its ability to distinguish objects belonging
to different classes but also its ability to keep a good
similarity between the objects belonging to a same
class.
When a classical testor is computed the comparisons
between objects belonging to a same class are not
taken account. Note that the matching function
(used in classical testors) is such that there are not
any subset of R with worse similarity than R in the
objects belonging to the same class, i.e., If two
objects are similar, comparing them through R, the
objects will be similar if they are compared through
any subset of R. However, the new FS-testor
concept is applied for any function, and it not
necessarily must satisfies this property.
Definition T⊆R, is a set FS-characterizer of
attributes for LM with respect to v, D’, R* and Γ iff
∀Oi, Oj ∈LM [v(()iOα , ()jOα)∈D’] ⇒

[() ()()jRiR
OIOI ** //

,Γ ≤ () ()()jTiT OIOI // ,Γ]

(characterizing condition).
Then a set T⊆R of attributes will be a FS-testor if its
ability to distinguish and characterize is not worse
than the reference set.
Definition T⊆R is a FS-testor for LM with respect to
v, D’, R* and Γ iff T is at the same time a FS-
differentiater and a FS-characterizer set for LM with
the same parameters.
Given as subset of R and a reference set, we can
evaluate if R is or not a FS testor against the
reference set, i.e., we can know if the subset of R
satisfies or not, the property established by the FS-
testor definition. As result of applying this criterion,
a crisp family of FS-testors is generated.
The fuzzy family of FS testors is defined as follows:
All the subsets satisfying the FS-testor definition
belong with degree 1 to the fuzzy FS-testors family.
The remaining subsets belong with a degree in the
interval [0,1). The membership degree associated to
a subset increases if this subset is near of satisfying
the properties expressed in the FS-testor definition.
Let T and R* subsets of R. Also, let

() () ()(){ }DOOOOOD jiji ′∉= ααν ,/, the set of pairs

of objects with different tuples of membership and
() () () ()(){ }DOOOOODC jiji ′∈= ααν ,/, the set of

pairs of objects with similar tuples of membership.
Then we define ()TS R* and ()TDR* as the following
sets:

()TS R* contains the pairs of objects, belonging to
different classes not satisfying the differentiating
property. ()TDR* contains the pairs of objects,
belonging to the same class not satisfying the
characterizing property.
Definition The fuzzy family of FS-testors for LM
with respect to v, D’, R* and Γ is defined as the
fuzzy set ξ= (){ }RTTT ppp ⊆:| ξµ , where

() () ()
()ODCOD

TDTS
T

p
R

p
R

p ∪

∪
−=

**

1ξµ .

Defining the fuzzy family of FS-testors we can
distinguish all the subsets of attributes that are not
FS-testors. In addition, the above definition
establishes a magnitude that informs us how many
near satisfying FS-testor definition a subset is. The
membership degree evaluates the capability of a set
of attributes (against the reference set) to distinguish
objects in different classes and characterize objects
into a same class.

4 Genetic Algorithm
The individuals handled by the genetic algorithm are
represented as n-tuples composed by 0 and 1 values
(genes), these values represent respectively absence
or presence of an attribute and n is the total number
of attributes.
We denote these n-tuples as Ti, i=1,...,m, where m is
the number of individuals in a population. In
addition, we denote the attribute subset of each
individual as Ii={xi1,...,xik}, where k≤n. For example,
if T1=[0,0,1,0,1,0,0,1,1] then this represents the
subset of attributes I1={x3,x5,x8,x9}.
The proposed genetic algorithm uses the following
operators:
Fitness function. This function is used to determine
how many pairs of objects do not satisfy the
characterizing and differentiating properties, when
objects are compared in a subset of attributes.
The fitness function is the following

()
() ()

()ODCOD

IDIS
IM

RR

∪

∪
−=

**

1

Where M(I) is the fitness for the I subset, or the
membership degree of I to the fuzzy FS-testors set.
Note when S(I) (the pairs of objects, belonging to

))}(),((*/*/ OIOI jRiRΓ

))}(),((*/*/ OIOI jRiRΓ

<Γ∈=))(),((),(),{()(//
* OIOIODCOOTD jTiTji

R

>Γ∈=))(),((,),{()(//
* OIOIODOOTS jTiTji

R

different classes not satisfying the differentiating
property) and D(I) (the pairs of objects, belonging to
the same class not satisfying the characterizing
property) increase M(I) tends to 0, and vice versa.
Crossover. To apply the crossover operator, the
population is ordered in descendent way, with
respect to the fitness function. We take two
individuals and apply uniform crossover, using a
mask randomly created, to generate two new
individuals. The first and the last individuals in the
population are crossing over. This procedure with
the remaining objects is repeated (in the defined
order).
Mutation. We apply the generative mutation
operator in the algorithm. This operator takes
randomly one point of the individual (gene), and
changes its value, if the point has value 0, the new
value will be 1, and vice versa.
In general, the genetic algorithm proceeds as follow:
First, it generates the initial individual population
randomly. The size (i.e. number of genes) of each
individual will be the number of attributes. Each
point of an individual will be 0 or 1 value. Second,
all individuals are evaluated in order to determine
their fitness (the algorithm verifies if each individual
is characterizing and differentiating). The
individuals of the population are crossed between
them, to generate another new. In this procedure, the
attributes of the individuals with great fitness are
preserved (i.e. the individuals that were more
characterizing and differentiating). The crossover
operation generates a new population that can
replace the previous population, or this new
population can be mixed with the old population in
order to get a population with better fitness.
The proposed algorithm in this paper is as follows:
Genetic Algorithm to compute fuzzy FS-testors.
Input: LM (Learning Matrix), Size (population size),
and Num_iter (number of iterations).
Output: FS (Fuzzy FS-testors subset)
1. FS ← ∅

Generate_initial_population(current_population)
Evaluate_population(current_population, FS)

2. Repeat for i=1 until i=Num_iter
Crossover(current_population,

 new_population)
Evaluate_population(new_population, FS)
Actualize_population(current_population,

 new_population)
Mutation(current_population)
Evaluate_population(current_population,

 FS)
3. Print(FS)

The function Generate_initial_population(popula_
tion) randomly creates the initial population.
Evaluate_population(population, FS) evaluates
population and keeps the fuzzy FS-testors found in
the FS list. The Crossover(source_population,
target_population) procedure applies the crossover
operator to source_population, and generate a new
population, which will be keep on
target_population.
Actualize_population(target_population, source_
population) copy the individuals from
source_population to target_population. Finally, the
Mutation(population) procedure applies the
mutation operator to population.

5 Experimentation
An example of application using a public standard
database is shown. We have chosen the zoo database
from http://www1.ics.uci.edu/pub/machine-
learning-databases/. This data is a simple database
containing 16 Boolean-valued attributes (from x1 to
x16). The attributes used to describe animals are:
hair, feathers, eggs, milk, airborne, aquatic,
predator, toothed, backbone, breathes, venomous,
fins, legs, tail, domestic, and catsize. All of them are
Boolean except the attribute legs which is numeric.
The animals are distributed in 7 classes with 41, 20,
5, 13, 4, 8, and 10 animals respectively.
In this example, we defined as comparison criteria
for all attributes, the Boolean function that assigns
one if two values for an attribute are equal and zero
in otherwise, see (1).

() () ()


 =

=
otherwise

OxOxif
OxOxC ji

ji 0

1
)(),(

(1)

The animals in zoo database are organized in seven
classes then a tuple of membership for Oi has seven
entries, one for each class. The function to compare
7-tuples of membership to the classes is defined in
(2). Therefore we consider that D’=1, i.e., two 7-
tuples will be similar if th function v take vale 1.

()


 =

=
otherwise

OOif
OO ji

ji 0

)()(1
)(),(

αα
ααν

(2)

Here R* (the reference set) is the set R, the whole set
of attributes, we will compare subsets of R against
R.
The similarity function used in this example is such
that allow us compare two subdescriptions I/T(Oi)
and I/T(Oj) in terms of the attributes in the set T. This
function depends of the comparison criteria for the
attributes (see (3)).

() ()∑
∈

=Γ
Tx

jijTiT OxOxC
T

OIOI)(),(
1

)(),(//
(3)

Remind that the similarity function, in this
approach, is a parameter so if the data set changes
we must define an appropriate similarity function
according to the practical problem.
In the table 2, we show the fuzzy FS-testors with
respect to v, D’, R* and Γ after apply our genetic
algorithm. Here we present three proofs in a PC
Pentium II, 400Mhz. In each column appear the
fuzzy FS testors for each class. In all cases, we
define population size as 15 and the number of
iterations as 10. The first result was accomplished in
5 minutes and 5 seconds. The second and third
results were achieved in 5minutes and 37 seconds
and 6 minutes and 2 seconds respectively.
Fuzzy FS-testors, following the definition, are such
that if we compare any pair of objects into the same
class through a FS-testor (with similar tuple of
membership) then we will get high similarity. In
addition, if we compare objects of the class against
objects out of class through a FS-testor then we will
get low similarity. We can see above property using
the class 3 and 6 shown in the table 3. In his table
appear the subdescription of animals in terms of
attributes belonging to the fuzzy FS-testor ({x1, x6,
x8, x11, x14, x16},0.67). If we evaluate the similarity
between pitviper and seasnake using (3) then we
obtain a similarity of 0.833, while if we compare
pitviper (in class 3) with the first frog (in class 6)
then we get a similarity of 0.5. In general, the
similarity between animals in the same class is
higher than similarity between animals of different
classes.

Animal x1 x6 x8 x11 x14 x16

pitviper 0 0 1 1 1 0
seasnake 0 1 1 1 1 0
slowworm 0 0 1 0 1 0
tortoise 0 0 0 0 1 1
tuatara 0 0 1 0 1 0
--
frog 0 1 1 0 0 0
frog 0 1 1 1 0 0
newt 0 1 1 0 1 0
toad 0 1 1 0 0 0

Table 3. Descriptions of animals for class 3 and 6 in
terms of attributes in the fuzzy FS-testor ({x1, x6, x8,

x11, x14, x16}, 0.67).

In this example we show how computing FS testor
we can find sets of attributes that help us to

characterize objects in a class, and at same time,
distinguish them of objects in other classes.

6 Conclusions
The proposed algorithm allows handling any
similarity function to compare two objects of the
data set. Therefore, it eliminates the restriction
presented by other techniques based on genetic
algorithms and evolutionary strategies, which
calculate testors handling Boolean similarity
functions [9,10]. In addition, the proposed algorithm
can process data sets containing a large number of
attributes and objects.
Here only we present the genetic algorithm and
some results on public standard databases. In a
second stage, we pretend to include this algorithm to
solve supervised classification problems. We will
use the algorithms based in partial precedence as
voting algorithms, Kora-Ω and representative sets
[11]. These algorithms allow us in natural way
consider FS-testors and their membership degree, in
order to classify new objects. The idea of these
algorithms is to classify objects according to their
description and their similitude with the objects
already classified in the Ki classes. The similarity is
evaluated analyzing sub-descriptions of objects
instead of whole descriptions. The FS-testors define
the set of features that should be compared through
a convenient similarity function. Therefore, It would
be possible to apply any of these algorithms to LM
in order to classify new objects, obtaining the
decision criteria for the class it belongs to.
On the other hand, there are applications that can
utilize a subset of fuzzy FS-Testors to improve their
outcome. For example: the LC conceptual clustering
algorithm, which can use fuzzy FS-Testors to
characterize clusters. In addition, we can mention
the k-d algorithm [13], which can generates a
decision tree as a fuzzy FS-Testor. The fuzzy FS-
testors can be used to solve problems of
dimensionality reduction as [14] but applying fuzzy
FS-testors.

References:
[1] Cheguis, I. and Yablonskii, S., About testors for

electrical outlines. Usp. Mat. Nauk 4, 66, 1955,
pp. 182-184 (in Russian).

[2] Dimitriev, A., Zhuravliev, Y. and Krendeleiev,
F., On the mathematical principles of pattern
and phenomena classification. Diskretnyi Anal
7, 1966, pp. 3-15 (in Russian).

[3] Lazo-Cortes M., Ruiz Shulcloper J., and
Cabrera-Alba E., An overview of the evolution of
the evolution of the concept of testor. Pattern
Recognition, 34, 2001, pp. 753-762.

[4] Martínez-Trinidad F. and Guzmán-Arenas A.,
The logical combinatorial approach to pattern
recognition an overview through selected works.
Pattern Recognition, 34, 4, 2001, pp. 1-11.

[5] Alba-Cabrera E. Nuevas extensiones del
concepto de testor para diferentes tipos de
funciones de semejanza. Tesis Doctoral
Universidad de la Habana, Cuba, 1997. (In
Spanish).

[6] Alba E. and Lazo M. Una solución global para
la utilización de los testores en problemas de
reconocimiento de patrones. Proc. III Taller
Iberoamericano de Reconocimiento de Patrones,
Mexico, 1998, pp.209-218 (In spanish).

[7] Michalewicz Zbigniew. Genetic Algorithms +
Data Structures = Evolution Programs. Springer
1996, USA.

[8] Mitchell Tom. Machine Learning. McGraw
Hill, 1997, USA.

[9] Sánchez G., Lazo M., and Fuentes O. Algoritmo
genético para calcular testores típicos de costo
mínimo. Proc. IV Simposium Iberoamericano de

Reconocimiento de Patrones, La Habana, Cuba,
1999, pp. 207-213 (In Spanish).

[10] Alba E., Santana R., Ochoa A., and Lazo M.
Finding typical testors by using an evolutionary
strategy. Proc. 5th Iberoamerican Symposium on
Pattern Recognition, Lisbon, Portugal, 2000, pp.
267-278.

[11] J. Ruiz-Shulcloper and M. Lazo-Cortés,
Mathematical Algorithms for the Supervised
Classification Based on Fuzzy Partial
Precedence, Mathematical and Computer
Modelling 29, 1999, pp. 111-119.

[12] Martínez-Trinidad F., Ruiz J. Algoritmo LC
conceptual para el agrupamiento de objetos.
Proc. Simp. Int. de Computación CIC-IPN,
Mexico, 1997, pp. 411-418, (In Spanish).

[13] García A., Martínez G., Nuñez E., Guzmán
A. Clasificación supervisada, inducción de
arboles de decisión, algoritmo k-d. Proc. Simp.
Int. de Comp. CIC´98, CIC-IPN, México, 1997,
pp. 602-614 (In Spanish).

[14] Lazo M., Douglas de la Peña and M.,
Quintana T. Testores por clase. Una aplicación
al reconocimiento de caracteres. Proc. III taller
Iberoamericano de Reconocimiento de Patrones,
México, 1998, pp. 229-236 (In Spanish).

Class Fuzzy FS-testors Fuzzy FS-testors Fuzzy FS-testors

1 ({x1, x2, x7 , x11},0.90) ({x1, x3, x4, x7, x10, x12, x13},0.79)
({x3, x4, x5, x7, x8, x12},0.76)
({x1, x4, x7, x9, x13, x14},0.75)

({x1, x3, x6, x8, x13, x14, x15},0.77)

2 ({x1, x2, x3, x5, x6, x8, x9, x13},0.97)
({x2, x3},0.93)

({x2, x3, x8, x9, x10, x13, x16},0.88)
({x1, x2, x5, x8, x9, x10, x13, x14, x16},0.85)

({x1, x2, x3, x8, x10, x11, x13, x14, x15},0.67)
({x4, x5, x7, x12, x13, x15},0.64)

3 ({x1, x6, x8, x11, x14, x16},0.67) ({x1, x8, x10, x13},0.83)
({x6, x13},0.81)

({x1, x4, x8, x9, x10, x13, x14, x16},0.73)

4 ({x7 x8 x10 x13},0.89) ({x1, x8, x12, x13, x15},0.89) ({x2, x4, x6, x10, x12, x13, x14, x16},0.95)
({x1, x3, x8, x10, x12, x13, x16},0.93)

5 ({x2, x3, x7, x8, x10, x11, x13, x16},0.62)
({x5, x6, x7, x8, x9, x11, x13, x14},0.61)
({x3, x7, x9, x16},0.58)
({x3, x4, x6, x10, x11, x13, x15},0.57)

({x1, x2, x3, x4, x5, x6, x10, x13, x14},0.76) ({x5, x6, x12, x14, x16},0.73)
({x1, x4, x11, x13, x14, x16},0.71)

6 ({x1, x4, x5, x6, x13, x14},0.91)
({x2, x4, x5, x6, x8, x9, x10, x13},0.86)

({x4, x6, x7, x8, x11, x13, x14, x15},0.71)
({x2, x5, x7, x8, x13, x15, x16},0.66)

({x1, x4, x6, x13, x14, x16},0.84)

7 ({x1, x10, x13},0.76) ({x4, x6, x7, x9, x11, x12, x13, x14},0.84) ({x1, x7, x10, x13},0.76)
Table 2. FS-Testors for zoo database.

