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Abstract: - This paper presents a simplified nonlinear observer for power systems by exploring the special
features of the nonlinear power system model. Rather than directly applying the existing nonlinear observer
theory to the 6th order nonlinear power system model, the model is first decoupled into a 3rd order nonlinear
subsystem and a 3rd order linear subsystem. Low order observers are designed for each subsystem separately.
Simulation results show that the proposed observer scheme can estimate the state of a power system with
good transient response and zero steady state error.
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1. Introduction
It is well known that the control of generator

terminal voltage through a conventional automatic
voltage regulator (AVR) and excitation system has
the potential to introduce negative damping into the
system dynamics. A power system stabilizer (PSS)
is designed to improve the system damping
performance via the utilization of a supplementary
damping signal through generator excitation.

Power system stabilizers based on optimal control
or pole assignment techniques have been developed
to damp power system dynamics oscillations. The
implementation of these control techniques requires
knowledge of the entire states, though they are not
always directly measurable. The development of an
estimator to construct the necessary states is
required.

Linear Observers based on linearized power system
model have been designed to estimate the state
variables of a power system. Such observers will
result in steady state estimation error when applied
to nonlinear power systems. The error may be so
large that the estimation results are useless in
application. Hence the nonlinear features should be
taken into consideration in the design of observers
for power systems.

Recent development in nonlinear observer theory
provides the possibility to the design of nonlinear
observers for power systems. However, the
derivation of a nonlinear observe is a tedious tasks
and even the most recent results in nonlinear
observer theory [1][2] are only suitable for low
order nonlinear systems. As a synchronous machine
model is usually sixth order or higher, observer
derivation directly based on the nonlinear observer
theory will be extremely complicated, if not
impossible.

In this paper we will design a nonlinear observer for
synchronous machines by combining the nonlinear
observer theory in [1] with the linear observer
theory in [4]. Rather than directly applying the
existing nonlinear observer theory to the 6th order
nonlinear power system model, the model is first
decoupled into a 3rd order nonlinear subsystem and
a 3rd order linear subsystem. A low order nonlinear
observer and a low order linear observer are
designed for the two subsystems respectively. The
resulted observer can estimate the state of a
nonlinear power system with good transient
performance and zero steady state error. Th paper is
organized as follows: Section 2 gives a brief review
on the nonlinear observer theory. Section 3 presents
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the proposed hybrid observer scheme for power
systems. Section 4 shows some simulation results.

2. Nonlinear Observer Theory
In this section, we will review some of the well-
developed results in nonlinear observer theory
[1][2][3]. Consider the single-input single-output
nonlinear system
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where ntx ℜ∈)(  is the state, ∞∈Cgf ,  are real

valued vectors, and ∞∈Ch  is a real valued
function.  The class U  of real-valued inputs is
constituted of uniformly bounded functions, i.e.
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The observability matrix of the system (1) is
defined as
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The Hölder condition [1] is defined as
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Qγ  and Qδ  in Equation (5) are the Hölder
constants associated with Q and ]1,0(∈Qδ .

The global Hölder condition can be satisfied by
most physically meaningful dynamic systems such
as power systems.

Theorem [1]: Let Q(x) be the observability matrix
associated with the pair (f(x),h(x)) of functions in
(1). Assume Utu ∈)(  for all 0≥t , and the triple
(f(x),g(x),h(x))has relative degree n (see [3]). If
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then there exists a finite gain vector nK ℜ∈  such
that the solution of the following system equations
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have the following properties
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3. Nonlinear Observer Design For
Power Systems
We will consider a single-machine infinite-bus
power system shown in Fig. 1. We will first make
the following definitions:

tv : terminal voltage; ov : infinite bus voltage;

fdE : field voltage; qe′ : q-axis component of
voltage behind transient reactance; mT :
mechanical input; δ : torque angle; ω :
angular speed; dx : d-axis reactance of the
generator; qx : q-axis reactance of the
generator; dx′ : d-axis transient reactance of
the generator; ex : reactance of transmission
line; doT ′ : d-axis transient open circuit time



constant; eoP : active power output; eoQ :
reactive power output.

The generator is represented by a third order
dynamic model:
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The excitation system is an IEEE Type ST1 exciter
shown in Fig. 2. For simplicity, we assume 0=cT .
Then the dynamic equations of the exciter can be
written as:
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where 22)( qdt vvtv += .

As the above power system is 6th order, direct
application of the nonlinear observer theory
summarized in the previous section will be
extremely tedious. Also the resulted nonlinear
observer is very complicated and makes real-time
applications very difficult. To simplify the design,
some practical aspects of power systems can be
considered. For power systems, fdE , δ  and tv  are
easily measurable variables. These will enable us to
decouple a power system model into two parts: a
nonlinear subsystem and linear subsystem. The
order of the nonlinear subsystem will be only 3rd

order. To design a nonlinear observer for this part

of the system will be much simpler. The state of the
linear subsystem will be estimated using a linear
observer.
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Fig. 1 Generator connected to infinite bus through a
double transmission line
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Fig. 2 IEEE Type ST1 excitation system

3.1 Decoupling

As fdE  and δ  are measurable, we can write
Equations (7) into the following form

fdNNNN Egxftx += )()( (9a)
δ== )()( NNN xhty      (9b)
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As fdE  and tv  are measurable, we can write
Equations (8) as

LLLLL uBxAtx +=)(    (10a)

fdLLL ExCty ==)(    (10b)
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Then the design of a nonlinear observer for the
nonlinear subsystem of Equations (9) can be carried
out separately from the design of a linear observer
for the linear subsystem of Equations (10), if fdE ,
δ  and tv  are measurable. Hence the nonlinear part
and the linear part of a power system are totally
decoupled from each other.

3.2 Observer Design for Nonlinear Subsystem

By applying the nonlinear observer theory
summarized in Section 2, the nonlinear transform
for the nonlinear subsystem (Equations 9) is
obtained as
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The observability matrix (see Equation 3) for this
subsystem is
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Then the observer for the nonlinear subsystem is
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3.3 Observer Design for Linear Subsystem

With tv  available for measurement, a third order
full order Luenberger observer for the linear
subsystem (Equations 10) can be designed by
applying linear observer theory in [4]. The observer
is in the following form
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where LK  is chosen to enable )( LLL CKA −
stable.

To further simplify the observer structure, a reduced
order observer [4] can also be designed for this
linear subsystem.

4. Simulation Studies
The following data is used in the simulation:

f=50 Hz, fb πω 2= , sTdo 5=′ , H=5, 6.1=dx ,
32.0=′dx , 55.1=qx , 2.0=ex , 0=CT ,

sTB 05.0= , 100=AK , sTA 05.0= , 025.0=FK ,
sTF 1= .

The pre-fault condition is: output power:
puPeo 8.0= , puQeo 5.0= ; terminal voltage:
puvto 05.1= .



4.1 Comparison With A Linear Observer

The performance of the proposed nonlinear
observer for the above power system is shown in
Fig. 3a-f by the dashed lines with the true state
shown by the solid lines. To demonstrate the
superior performance of the proposed hybrid
observer over a linear observer, a linear sixth order
Luenberger observer is also designed based on the
fully linearized model of this power system. The
measurement for this full order linear observer is

fdE  and δ . This linear observer and the proposed
hybrid observer are tested on the same nonlinear
power system through simulation. It is shown that
under a small step change of 0.01 pu in refv , both
the proposed hybrid observer and the full order
linear observer can follow the true state of the
power system accurately. Both observers have the
same initial values. However, when a large step
increase of 0.2 pu in refv  is applied, the difference
in the performance of the two observers becomes
obvious. The hybrid observer can still follow the
true state with zero steady state error, while the
linear observer fail to estimate the state accurately.
The estimation from the linear observer for

puvref 2.0=∆  is shown in Fig. 3a-f by the dotted
lines. The inability of the linear observer to follow
the true state is because that a linearized model
approximates the nonlinear power system
accurately only in a small range.

(a)

(b)

(c)

(d)

(e)



(f)

Fig. 3 Estimation of the state of a nonlinear power
systems for puvref 2.0=∆ . Solid lines: the true state;

dashed lines: estimation by the proposed observer;
Dotted lines: estimation by linear observer. (a)
Estimation of ω ; (b) Estimation of δ ; (c) Estimation
of qe′ ; (d) Estimation of fdE ; (e) Estimation of Bx ; (f)
Estimation of Fx .

4.2 Nonlinear Observer Based Control

Because the proposed nonlinear observer can
estimate the state of a power system more
accurately, it gives improved performance over a
linear observer when combined with linear
feedback control. A PSS based on linearized power
system model is designed by applying the pole
assignment technique. The state required by the
feedback-control-law is estimated using the
proposed nonlinear observer. This linear control in
conjunction with the nonlinear observer scheme is
applied to the simulated nonlinear power system
under fault condition. The fault is a three-phase
short circuit at one of the transmission lines near the
generator and starts at t=0.2s. During fault, the
terminal voltage is dropped to zero. The fault is
cleared through isolating the faulted line 0.1 second
after the fault started. The transient response of the
machine speed without the PSS is shown in Fig. 4
by the dashed line. The speed response using the
linear PSS based on the estimation from the
proposed nonlinear observer is shown by the solid
line. The speed response using the linear PSS based
on the true state is also shown by the dotted line for
comparison. It can be seen that a linear PSS based
on the estimation from the proposed nonlinear
observer can damp out power system oscillation
very effectively. A linear control based on the
estimation from a linear observer that is designed

for the linearized power system model is also tested
under the same fault condition. The resulted speed
response is unstable.

Fig. 4 Speed response under fault condition. Dashed
line: without PSS; Solid line: with PSS based on
estimation from the proposed nonlinear observer;
Dotted line: with PSS based on the true state.

5. CONCLUSION

A simplified nonlinear observer for power systems
has been proposed in this paper by combining
nonlinear observer theory with linear observer
design. The power system model is first separated
into lower order nonlinear and linear subsystems by
considering the practical features of a power
system. Observers are then designed for each
subsystem separately. The proposed hybrid
observer is simple in design and gives superior
performance over conventional linear observers
under large disturbances.
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