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Abstract: The fast algorithm for calculating the image intensity distribution in optical system with partially 
coherent illumination is proposed. The algorithm is based on the coherent-mode representation of cross-spectral 
density function of illumination. An example of the numerical simulation of a partially coherent optical system is 
given. 
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1   Introduction 
The computer simulation is an essential tool in the 
design of optical systems. In most cases such a 
simulation consists in numerical calculating the 
image intensity distribution for given object, certain 
characteristics of illumination and known 
configuration of optical system. For partially coherent 
illumination, that is the most general case, such a 
calculation represents a rather complicated 
computational problem and needs frequently an 
unacceptably long computer run time. In this paper 
we propose the fast algorithm for calculating the 
image intensity distribution based on the modal 
theory of partially-coherent optical systems [1]. We 
evaluate the computational efficiency of this 
algorithm and give an example of image intensity 
calculation. 
 
 
2   Image Intensity calculation 
The intensity distribution in the image plane of an 
optical system with partially coherent illumination, 
under certain conditions, is given by [2]  
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where t(x,y) is the complex amplitude transmittance 
of object, ),,,( 2211 yxyxW is the cross-spectral 
density function of illumination, ),,,( yxvuH is the 
amplitude spread function of optical system, and the 
asterisk denotes the complex conjugate. In the limit 
cases of completely coherent and completely 
incoherent illumination, Eq.(1) takes the forms, 
respectively, 
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   Let us evaluate the computational complexity of 
calculation in accordance with the general expression 
(1). The dominant portion of such calculation is the 
multiplication of four 4-D functions t(x1,y1)t*(x2,y2), 
W(x1,y1,x2,y2), H(u,v,x1,y1) and H(u,v,x2,y2). To realize 
the numerical multiplication of these functions, it is 
necessary to multiply their samples for all possible 
combinations of sampling points taken one by one in 
each of three planes (u,v), (x1,y1) and (x2,y2). Hence, 
assuming that the illumination field, object and 
amplitude spread function have each been adequately 
represented by N × N sampling points, one finds that   (1) 



the total number of operations required to compute 
I(u,v) is proportional to 
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The magnitude of this number can easily result in an 
unacceptably long computational time. Thus, for 
example, when N = 100 and the computational speed 
is 106 operations per second, the computer run time 
needed for calculation of I(u,v) is about 300 h. 
Clearly, an alternative approach to the calculation of 
intensity distribution is desired as a way to reduce the 
computational effort. 
 
 
3   Fast Algorithm 
According to Wolf´s theory [3], the cross-spectral 
density function of a wide class of sources may be 
represented in the form of the Mercer expansion, i.e., 
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where λn are the eigenvalues and ),( yxnΦ are the 
orthonormal eigenfunctions of the homogeneous 
Fredholm integral  equation 
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The expansion (5) represents the cross-spectral 
density function of the illumination field as a 
superposition of spatially coherent mutually 
uncorrelated elementary modes. Substituting for W 
from Eq. (5) into Eq. (1), after a straightforward 
calculation we obtain 
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represents the intensity distribution formed by the    
n-th coherent mode of illumination field. The 
eigenvalues λn may be arranged in a converging 
sequence, and hence, it is possible to truncate the 
summation in Eq. (7) to a finite number M of 
expansion terms that ensures the admissible value of 

the relative error of approximation. In Ref. [4] the 
concept of the effective number ℵ of uncorrelated 
modes, needed to represent the illumination field, is 
introduced, and its upper bound is defined by the 
following inequality: 
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This number may be used to establish on optimal 
point for truncating the orthogonal representation of 
the intensity distribution. 
   Let us evaluate the computational complexity of 
intensity calculation in accordance with the proposed 
method. The dominant portion of intensity calculation 
from Eqs. (7) and (8) is the consecutive 
multiplication of 4-D function H(u,v,x,y) by 2-D 
function ),(),()( 2

1
yxyxt nn Φλ , followed by the 

calculation of a square absolute value of the product 
for every n-th expansion term. To realize the 
numerical calculation of every expansion term in Eq. 
(7), it is necessary to multiply the samples of this 
functions for all possible combinations of sampling 
points taken one by one in each of the planes (u,v) 
and (x,y), and then to multiply the obtained product 
by its conjugate value. Hence, using again N × N 
sampling points and truncating the summation in Eq. 
(7) to the effective number ℵ of uncorrelated modes, 
one finds that the number of operations needed to 
compute I(u,v) by the proposed algorithm is 
proportional to 
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or, for rather large N, 
 

4NC ℵ≈ .                           (11) 
 

   For a completely coherent illumination, ℵ=1, and 
the computational effort C  decrease to N4. For a 
partially coherent illumination, C increases linearly 
with ℵ, i.e., the computational effort is lager the 
more incoherent the illumination. For sufficiently 
large values of ℵ, the illumination may be generally 
considered to be completely incoherent. In this case, 
the image intensity distribution can be calculated in 
accordance with Eq. (3) and the computational effort 
C reduces again to N4. Comparison of the 
computational efficiency of the direct calculation and 
the proposed algorithm for different values of ℵ is 
illustrated by schematic picture in Fig. 1. It is evident 
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from this figure that the fast algorithm can be 
efficiently employed to calculate the image intensity 
distribution when ℵ ≤ N. For the same values of N 
and the computational speed that are in the example 
of the previous section, the computer run time needed 
for calculation of I(u,v) from Eqs. (7) and (8) takes 
from 2 min to 3 h, depending on the degree of 
coherence of the illumination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Estimation of the computational effort C as a 
function of coherence (effective number ℵ of uncorrelated 
modes of illumination) for: 1- the direct method in 
accordance with Eq. (1); 2- the fast algorithm; 3- the direct 
method in accordance with Eq. (3). 
 
 
4 Example 
To illustrate an application of the proposed 
algorithm, we calculated the intensity distribution in 
the image of object, which can be well approximated 
by the 1-D Dirac comb function, i.e., 
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Such a choice of the object allows the result of 
integrating in Eqs. (1) and (8) to be obtained in an 
explicit analytic form, a fact that gives us a chance 
to evaluate an accuracy of the proposed algorithm. 
   Taking into account the 1-D character of our 
object, and for the sake of simplicity, as an 
illumination field, we consider the secondary 1-D 
Gaussian Schell-model source [4] that is 
characterized by a cross-spectral density function of 
the form  
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where I0, 2
Iσ  and 2

µσ  are positive constants. This 
type of source was chosen because it exhibits the 
essential features of many sources encountered in 
practice and yet it can be analyzed mathematically 
with relative easy. For this source  
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and 
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and Hn (...) is the Hermite polynomial of order n.  
   At last, we considered that the amplitude spread 
function of an optical system is given by [2]  
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where 2
122 )( vu +=ρ , J1(...) is the first-order 

Bessel function, λ is the wave length, f is the focal 
distance, R is the radius of output pupil, and α, here 
and further on, is a dimensionless coefficient. 
   On substituting from Eqs. (12), (13) and (17) into 
the 1-D version of Eq. (1) and making use of the 
sifting property of the Dirac function, it is 
straightforward matter to obtain the following 
expression for the theoretical image intensity 
distribution: 
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By analogy, but this time using the fast algorithm, 
with due regard for the truncation of summation in 
Eq. (7), we obtain the following approximation of 
the image intensity distribution (18): 
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   To evaluate the quality of our approximation, we 
realized numerical calculation of the intensity 
distribution I(u) in accordance with Eqs. (12),  (18) 
and (20). When calculating we put x0 =2.44λf/R, 
which is twice greater than the Rayleigh limit of 
resolution for our optical system, and σI  = 2σµ = 
10x0, which correspond to the case of true partial 
coherence. We truncated the summation over 
indexes k,m,l to nine central Dirac impulses in the 
object and varied the number M of the terms in the 
modal expansion. The results of calculation are 
shown in Fig. 2. As can be seen in this figure, with 
the increase of number M the approximate intensity 
distributions come closer to the theoretical curves. 
When the number M is equal to the effective number 
ℵ of uncorrelated modes of illumination (in our 
example ℵ=4), the relative error of the fast 
algorithm makes up approximately 1% and, when M 
= 2ℵ, it becomes negligible. 
 
 
4   Conclusions 
The proposed fast algorithm allows to reduce 
considerably the computational effort needed for 
calculating the image intensity distribution in 
partially coherent optical system and its efficiency is 
larger the more coherent the illumination. It must be 
noted that the application of this algorithm requires 
the knowledge of the coherent-mode representation 
of illuminating field (eigenvalues λn and 
eigenfunctions Φn). In general case, the evaluation of 
coherent modes entails the numerical solution of the 
integral equation (6), that is not an easier 
computational task than the proper calculation of the 
image. However, it should be taken into account that 
once Φn and λn have been calculated for given 
illumination, they can be stored and applied to the 
calculation of image for any object and any optical 
system. Thus, the fast algorithm can be considered as 
an indispensable tool for the analysis and computer 

simulation of optical system with partially coherent 
illumination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Results of calculating the image intensity 
distribution in accordance with Eq.(20) for: a) M = 1; b) 
M = 4. Theoretical intensity distribution, obtained 
according to Eq.(18), is shown by solid curves. 
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