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Abstract: - In this paper, we generalize our proposed earlier computing method [10-11] to solve hydrodynamic 
semiconductor device equations. For submicron MOSFET devices, we simulate their temperature distribution 
by solving carrier energy balance equation with adaptive computational technique. This robust method based on: 
(1) the finite volume (FV) discertization scheme; (2) the monotone iterative (MI) algorithm; (3) a posteriori 
error estimation; and (4) the 1-irregular mesh refinement; is successfully developed and implemented. 
Numerical results not only have a good agreement with physical phenomena but also demonstrate that our 
methodology has good computational efficiency. Convergence property for arbitrary initial guesses for the 
beginning of simulation is also reported to show the robustness of the method. 
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1.  Introduction 
 
For microelectronics, the progress of semiconductor 
fabrication technology for the advanced metal oxide 
semiconductor field effect transistor (MOSFET) has 
been of great interests [1-2] in recent years. The 
device channel lengths are so small that nonlocal 
effects and source/drain engineering become more 
important for the device characteristics and 
performance. Despite significant advances over the 
last decade, TCAD (technology computer-aided 
design) must progress even more dramatically during 
the 2000s if simulation is to live up the high 
expectations of the user community. The TCAD 
approach [2] provides a direct alternative to study the 
intrinsic and extrinsic electrical behavior for these 
MOSFET structures at a very fundamental physical 
level. In recent years, especially for the ultra-small 
MOSFET device, it has become a very important tool 
in the development of new devices and fabrication 
technologies [2-15]. The aim of our works is to 
develop an efficient and intelligent physical-based 
TCAD tools for the day-to-day micron and nano 
advance CMOS design. 

To study the effects mentioned above for 
ultra-short channel MOSFET devices, an energy 
balance equation should be solved numerically for 

carrier temperature distribution [10-13]. Simulated 
results can be applied for the further optimal design 
and characterization. 

To study the variation of carriers temperature and 
their physical mechanism inside a submicron 
MOSFET device, a hydrodynamic model including 
at least the energy balance equation in a device 
simulation should be solved, and this approach has 
been received many notices. Various simulation 
approaches have been proposed for the numerical 
solution of this equation efficiently [3-15]. The rapid 
variation of electron temperature within very small 
regions leads to a significant difficulty in 
semiconductor device simulation. This electron 
temperature model problem is so-called a singular 
nonlinear boundary value problem. It has the 
numerical stability and the convergence problems 
when solving the system of nonlinear algebraic 
equations arising from the discretization of such 
energy balance equation. The well known 
Scharfetter-Gummel-Tang (SGT) scheme [13-15] for 
solving this problem holds only for very fine mesh 
artificially. However, it goes without saying that the 
arrangement of the fine mesh to fit the SGT 
assumption is surely a difficult task. 

In this paper, we further generalize our proposed 
earlier computing algorithm for the intelligent 



numerical solution of semiconductor device energy 
balance equation using not only monotone iterative 
algorithm but also adaptive mesh refinement rule. 
First of all, we solve a set of drift diffusion (DD) 
equations with our developed device simulator 
earlier [3-9]. The computed physical quantities, such 
as electron concentration, electrostatic potential, and 
electron current are used as the input data for carrier 
temperature simulation. According to our 
methodology [3-11], the energy balance equation is 
transformed into another partial differential equation 
(PDE) with having a self-adjoint form and then 
discretized using adaptive finite volume method with 
1-irregular unstructured mesh. The adaptive FV 
discretized energy balance equation leads to a system 
of nonlinear algebraic equations with a diagonal 
dominate property. We solve the nonlinear system by 
applying a monotone iterative method directly. With 
the developed carrier temperature simulator, we 
study basic physical energy variation mechanism for 
a submicron NMOSFET under high bias condition. 
The numerical results and convergence property of 
the algorithm are also reported in this work. 

This paper is organized as follows. In Sec. 2, we 
briefly state energy balance equations associated 
physical models. In Sec. 3, we present the overall 
adaptive computational procedure for the carrier 
temperature calculation. In Sec. 4, simulation results 
for a submicron N-MOSFET device are presented to 
demonstrate the robustness and efficiency of the 
method. Sec. 5 draws the conclusion and suggests the 
future work. 
 
 

2. A Hydrodynamic Model 
We state a hydrodynamic  (HD) model that includes a 
drift diffusion (DD) model and energy balance 
equations for electrons and holes. The DD model was 
derived from the Maxwell’s equation as well as 
charge conservation law. 
 

),( Dpn
s

q
+−=∆

ε
φ                                                (1) 

),,(
1

pnR
q n =⋅∇ J                                                (2) 

),,(
1

pnR
q p −=⋅∇ J                                                (3) 

,nqDnq nnn ∇+∇−= φµJ                                       (4) 

.pqDpq ppp ∇−∇−= φµJ                                      (5) 
 
Eq. (1) is so-called the Poisson equation. The Eqs. (2) 
and (3) derived from the charge conservation law are 

the electron and hole continuity equations. The Eqs. 
(4) and (5) are electrons and holes current equations, 
respectively. The unknown φ = φ(x,y) to be solved is 
the electrostatic potential; n and p are electrons and 
holes concentrations. The function )( −+ −−= AD NND , 
in Eq. (1), is the specified ionized net doping profile, 
and R = R(n,p) is the recombination rate for electrons 

and holes [1]. The quantity C.q 1910602181 −×= is 
the elementary charge; 09.11 εε =s  is silicon 

permittivity. The +
DN , and −

AN  are ionized donor and 

acceptor impurities, and cmF /1085418.8 14
0

−×=ε  is 

the permittivity in vacuum. The Dn, Dp, µn, and µp are 
electron and hole diffusion coefficients and mobility 
functions, respectively [1]. This DD model contains 
Eqs. (1) – (5), and was solved successfully in our 
earlier works [3-9].  
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Fig. 1. A two-dimensional cross section domain for a 

submicron N-MOSFET device. 
 

 
The HD model contains energy balance equations 

for electrons and holes. It will be solved for studying 
the carrier temperature variation. 
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where the notations as well as the physical models 
are followed our conventional symbols and can be 
found in [10-11]. In Sec. 3, we apply the adaptive FV 
and MI methods to solve the above HD equations. 
With those computed physical quantities from the 
DD equations, the energy balance equations are then 
solved to obtain the carrier temperature distribution 
over the device structure. 

As shown in Fig. 1, the HD equations (1)-(9) are 
subject to mixed type boundary conditions in a 
two-dimensional simulation domain. On the left and 
right sides, the homogeneous Neumann type 
boundary condition is considered. On the Source, 
Gate, Drain and Substrate contacts, the Dirichlet type 
boundary condition is applied [1,3-15]. The proposed 
adaptive solution procedure for the numerical 
solution of these equations will be discussed in Sec. 
3. 
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Fig. 2. An overall simulation procedure for a HD 

semiconductor device simulation. 
 
 

3.  Adaptive Simulation Technique 
As shown in Fig. 2, with the computed results from 
the DD model in advanced, we solve energy balance 
equations (6)-(9), subsequently. To calculated 
electrostatic potential, electric field, carrier 
concentrations, and current flows, Eqs. (1)-(5), the 
drift diffusion equations are solved with the 

Gummel’s decoupled algorithm [3-9,14-15] and 
monotone iterative method [3-9]. Here we briefly 
state the flowchart and numerical methods for the 
solutions of drift diffusion model which can be found 
in our earlier works [3-9]. The well-known 
Gummel’s decoupled method is that the device 
equations are solved sequentially For the numerical 
solution of semiconductor device DD model, the 

Poisson’s equation is solved for )1( +gφ  given the 
previous states u(g) and v(g). The electron current 

continuity equation is solved for u(g+1) given )( gφ  
and v(g). The hole current continuity equation is 

solved for v(g+1) given )( gφ  and u(g). The superscript 
index g denotes the Gummel’s iteration loops. Each 
the decoupled PDE is solved adaptively [3-9]. 
Decoupled equation is discretized with the FV 
method. The corresponding nonlinear system is 
solved with the MI algorithm. When a converged 
solution is computed, we perform error estimation of 
the results for all elements. If the solution does not 
satisfy the specified stopping criterion (TOL), we 
will run the mesh refinement and repeat the 
computation. The results obtained from the DD 
model are used as the input data for the numerical 
solutions of the carrier balance equations (6)-(9). 

The conventional algorithm for the numerical 
solution of electrons and holes energy balance 
equation in semiconductor device simulation consists 
of: (i) applying the FV (or so-called the finite box) 
method to discretize the equations; (ii) using 
Scharfetter-Gummel-Tang scheme, an exponential 
fitting liked algorithm, [10-15] for the electron and 
hole energy balance equations to construct a system 
of nonlinear algebraic equations; (iii) solving the 
nonlinear system with Newton’s iteration method; 
and (iv) repeating the step (iii) until the solution 
converged. Our simulation algorithm, as shown in 
Fig. 2, not only replaces Newton’s iteration by the MI 
method but also applies the adaptive computing 
method [3-9] for a posteriori error estimation and 
automatic mesh refinement. The system of nonlinear 
algebraic equations arising from adaptive FV 
discretization on a 1-irregular unstructured mesh, as 
shown in Fig. 3, forms to a nonlinear system (10), 
where the matrix A can be proved that it is still a 
M-matrix. 

 
Az = -F(z),                                                              (10) 
 
where z is the unknown vector, F is the nonlinear 
vector form, and A is the corresponding matrix, 
respectively. Based on our previous observations 



[10-11] the nonlinear property of the right hand side 
of the eqations (6)-(9) is the monotone functions in its 
unknown, we have a similar result concerning the 
well-posed problem for the adaptively discretized 
energy balance equations. 
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Fig. 3. 13-types 1-irregulr mesh structure. 

 
For a certain type of the 1-irregular mesh structures, 
as shown in Fig. 4, the nonlinear system in 
component-wise form and the entries of the matrix A 
is as followed. 
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In Eq. (8), it can be verified that all coefficients are 
nonnegative and satisfy the conditions 
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for all discretization index (i,j) in the device domain. 
For other cases, we have the similar results and 
properties; therefore we can prove the following 
result immediately. 
 
Theorem 1 The nonlinear system (10) arising from 
above adaptive finite volume discretization scheme 
has at most a solution. 

Furthermore, the monotone iterative scheme for 
the corresponding discretized nonlinear system (10) 
is of the following form [3-11]: 
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where z is the unknown vector, F is the nonlinear 
vector form, and D, L, U, and I are diagonal, lower 
triangular, upper triangular, and identity matrices, 
respectively. The monotone iterative parameter λ is 
determined node-by-node depending on the device 
structure, doping concentration, bias condition, and 
nonlinear property of each decoupled equation. 
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Fig. 4. One of the 13 types of the 1-irregular mesh 

structure. 
 

The MI method applied here for semiconductor 
device temperature simulation [3-11] is not only 
ready for parallelization but also a global method (i.e., 
it does not require a sufficiently accurate initial guess 
to begin with the solutions). Once the approximated 
solutions are computed we do a error estimation and 
then the mesh refinement following the rule of the 
1-irregular unstructured mesh [3-9]. 
 
 

4   Simulation Results and Discussion 
In this section, to test the robustness of the method 
we present here the computed electron temperature 
distribution for a 0.25 µm N-MOSFET device at high 
bias condition. Similarly, holes temperature can be 
calculated with the proposed method. The required 
electron concentration, electrostatic potential, 
electric field, and electron current density are 
computed directly from the DD model in advance. 
This tested device has a Gaussian distribution doping 



profile. The gate oxide thickness equals 7 nm; the 
ratio of device width and channel W/Leff equals 
40/0.25 and VBS = 0V. The profiles have their 
maximum values 1020/cm3 in both the source and 
drain, where the substrate doping is of 1016/cm3. 
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Fig. 5. Initial mesh for the adaptive computation. 

 
Fig. 5 shows the initial mesh applies to simulate 

the N-MOSFET device temperature distribution. It 
contains 256 elements. The applied voltage for this 
device is VDS = VGS = 2.0V, respectively. The Fig. 6 
shows a final refined mesh for the numerical 
solutions of the carrier energy balance equations. In 
our calculation experience, it takes about 7 
refinements to satisfy the specified stopping criterion. 
This refined mesh contains about 48000 elements in 
the simulation domain. With the error estimation, the 
unstructured mesh is generated automatically. 
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Fig. 6. A refined mesh for the adaptive computation. 
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Fig. 7. Computed electron temperature of the 

N-MOSFET with the initial mesh. 
 

Fig. 7 presents the computed electron temperature 
with the initial mesh. The result is a rather rough data. 
After the error estimation and the 1-irregular mesh 
refinement; we find, as shown in Fig. 8, the result is 
excellent and has its physical meaning that the 
temperature attains its maximum near the channel 
and the drain side. Compared with the conventional 
structure mesh, our adaptive mesh and solution 
technique have their robustness and improve the 
quality of the solution significantly. 
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Fig. 8. Electrons temperature with the final refined 

mesh. This tested 0.25µm N-MOSFET 
devices is with VDS = VGS =2.0V  

 
With the developed HD simulator, we have 
calculated the electron temperature for the 
conventional N-MOSFET structure and it is about 
4900 k at VDS = VGS = 2.0V. The high temperature is 
due to the high electric field at the drain side and can 
be further improved with the LDD drain engineering 
[1,10-11]. As shown in Fig. 9, we present the global 
convergence property of the adaptive FV and MI 



algorithms for the numerical solution of energy 
balance equations. It confirms that the MI method for 
device simulation has its robustness. 
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5   Conclusion 
In this paper we have successfully generalized our 
proposed earlier simulation technique to calculate 
electron temperature by solving a HD model 
adaptively. This approach relied on the MI method, a 
posteriori error estimation and 1-irregular mesh 
refinement technique has been developed and 
implemented. Numerical results for a submicron 
N-MOSFET show the robustness and efficiency of 
the method. In the future work, we plan to extend this 
adaptive computing method for advanced quantum 
transport equations simulation. 
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