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Abstract: - The generalized Kubo-Greenwood formula for conductivity is used for an 
explicit calculation of the perpendicular conductivity of GaAs-AlGaAs (crystalline III-V) 
heterostructures. Two cases are discussed (a) evaluation of DC conductivity at low 
temperatures and (b) AC conductivity at any temperature T. The method involves the 
causal Green’s function and relates the conductivity with superlattice (multilayer) 
parameters such as repeat distance, miniband energies and their corresponding widths, 
and the Fermi level. Analytical results are derived that are applicable to III-V 
photovoltaic structures with multiple layers and non-zero tunneling.  
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1 Introduction 
AC and DC conductivity is a fundamental transport parameter for any device that 
produces free conducting carriers under illumination, and in the dark respectively. Such 
carriers are expected to tunnel through the potential barriers, thus contributing to 
appreciable conductivity values along the growth direction of these devices. Illuminated 
heterostructures exhibit improved AC photoconductivity when exposed to different 
wavelengths (either single or multiple). More specifically, illuminated photovoltaic p-i-n 
heterostructures are of high interest, because they provide (a) wide gap front window for 
more effective incident photon collection and (b) high drift velocities leading to higher 
current collection efficiencies. Improved design proposals include superlattices in the 
intrinsic regions with an overall effect of decreasing recombination losses. Thus, the 
transport properties of the superlattice p-i-n photovoltaic structures are of interest, and 
this is exactly what is proposed in this communication: an explicit method of derivation 
of the AC-conductivity, as a general function of the incident solar photons. When the 
intrinsic multi-layer region of a heterostructure solar cell is illuminated by an incident 
photon flux G(λ), electrons are faced with two choices: (a) they may thermally escape to 
the uppermost conduction band (wide gap material) and (b) they may tunnel through the 
thin potential barriers. It is a known fact that tunneling prevails at low temperatures, 
while thermal escape dominates at relatively high temperature. In either case the Fermi 
level is positioned accordingly, and plays a crucial role in the evaluations of the 
photoconductivity. Photoconductivity is treated as a complex quantity of which the real 
part is provided from the generalized Kubo-Greenwood formula which includes (a) the 
Green’s function (b) Fermi level and (c) the incident photon energy.  



 
2 Theory 
In any superlattice structure there is a certain number of energy solutions that are 
associated with certain miniband widths. Carriers are expected to tunnel through potential 
barriers, thus producing non-zero (photo)-conductivity along the growth direction of the 
device. In this communication the Kubo-Greenwood formula is used for the case of a 
superlattice structure. The real part of the conductivity is given from the Kubo-
Greenwood formula [1,2] by: 
 
 

 
 
          (1) 
 
where f(E) is the probability function distribution of the carriers, m is the effective mass 
of the carriers, e is the electronic charge, hω/2π is the energy of the electronic jump from 
state to state, photons at frequencies f = ω/2π, h is Planck’s constant, the sub-index of the 
momentum operator α = x,y,z, Ω is a normalization volume and G+(E, kz) is the causal 
Green’s function in the weak scattering limit (no self-energy of electrons) [2]: 
 

          (2) 
 
where kz is the wave vector of the superlattice Brillouin zone, and E(kz) is the energy of a 
carrier in the superlattice E(kz) = Eo + gn cos(kzd), gn is the miniband width, d is the 
period of the superlattice, Eo is the miniband solution in the quantum well, and in the 
tight-binding approximation. In the k-representation [1,4], the momentum operator and 
the Green’s function are both diagonal and thus (1) becomes as follows: 
 

 
(3) 

 
Since the momentum matrix element in (3) is just 
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And since the probability at DC conditions becomes: 

 
Expression (3) simplifies as follows: 
 

          (4) 
 
Where the factor 2 is for the two spin orientations of the electrons, and where for 
simplicity kz (along the growth direction has been replaced by k). For Maxwellian 
probability distributions, and therefore at any temperature T, the perpendicular tunneling 
conductivity (by means of the tight binding energy dispersion relation mentioned above) 
becomes: 
 

 
 

(5) 
 
The summation in (5) is over all k-values of the superlattice and the integration scans all 
available energy values in the quantum wells, starting from the lowest miniband. In 
realistic devices, the summations runs over a finite number of k (= kz), which in most 
cases are not more than two (for ~10nm and less, quantum well widths). A preliminary 
advantage of (5) is the explicit relation (difference) between superlattice energy 
dispersion and the fermi level. Changing variables: y= (E-E(k))/kT, the conductivity is 
found to depend on y as follows: 
 

 
(6) 

 
Since in most cases of interest (in the context where thin quantum well layers cause 
pinning of the fermi level in-between the minibands, where the energy differences are 
less that kT) E – E(kz) = gn << kT, the exponentials in (6) can be linearized by a Taylor 
expansion with the first two terms kept (and neglecting second order terms). Thus (6) is 
simplified as follows: 
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(7) 

 
Or  
 

 
(8) 

Expression (8) provides an analytic result for the tunneling conductivity of a multiple 
quantum well heterostructure at DC conditions. Tunneling is due carriers trapped in 
quantum wells, of which the corresponding wavefunctions overlap (for nearest 
neighbors) in the multi-structure. As it is seen from (8), the dark conductivity is a strong 
function of temperature, miniband width, superlattice repeat distance, and carrier energy 
E relative to superlattice dispersion energy E(kz). The superlattice wave-vector is 
confined in the 1st Brillouin zone: 

 
 
And is given by the Born von Karman cyclic boundary conditions [3]: 
 

 
Where N is the number of repeat distances of the superlattice.  
 
3 AC Conditions for Conductivity 
Information can be extracted about light induced conductivity directly from (1), at any 
frequency ω: by splitting (1) in a difference of two integrals I1, I2,  
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          (9) 
Where now: 
 

(10) 
 
Σ(Ε) = Σ1 – iΣ2  is the electronic self-energy,  to be used in the following for expressing 
carrier scattering under illumination. Substitution of (10) in (9) leads to the following 
explicit form of integrals I1, I2: 
 

 
(11) 

and  
 

 
(12) 

 
The difference of (12) from (11) will express photoconductivity of a multilayer III-V 
heterostructure, at any temperature. The quantity vz(kz) is the electronic velocity along 
the tunneling direction. In the weak scattering limit, the real part of the self-energy (Σ1) 
can be neglected in an absolute energy scale. For Maxwellian probability distributions, 
the second integral in (12) becomes a fraction of I1 because of the fact that: 
 
 

(13) 
 
And therefore: 

          (14) 
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The photoconductivity, after subtracting (12) from (11), via (13), (14) is: 
 

          (15) 
 
 
Which at high temperatures (kT>>hν) simplifies to  
 

(16) 

At any other T, the photoconductivity is: 
 

(17) 
4 Conclusion 
The present work is an effort toward the evaluation of dark and photoconductivity (a 
fundamental transport property) of III-V multi-layered structures. The method is based on 
the Kubo-Greenwood formula and uses the Green’s function for a direct evaluation of 
DC and AC conductivity. Under DC conditions (ω 0), an explicit result is obtained, that 
expresses conductivity explicitly as a function of superlattice parameters, miniband 
width, and superlattice dispersion (via the superlattice wave number). At AC conditions, 
the photoconductivity is expressed explicitly as a function of incident light frequency. 
For a range of incident wavelengths, an integration of (17) would lead to the total 
frequency response of a superlattice-based photovoltaic structure.  
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