Scaling in the Fraunhofer Region from Gratings with Complex
Structure
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Abstract: - We develop the mathematical foundation for the construction of regular fractal functions with
periodic envelope, using analog periodic functions as basic components. This method represents an extension of
the results obtained for the case of binary functions, studied in some previous works. The representation of
fractal sets through a product superposition of scaled periodic components can be related with the IFS (Iterated
Function System) method. The study that we carried out use cosine functions that can be superimposed as a
product to obtain the complex grating. We study the degree of scaling in the diffraction from such gratings.
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1 Introduction

During the last decade, scientists working in the
more diverse arcas have recognized that most of their
experiments possess a special geometric complexity
[1]. In a previous work, it has been demonstrated that
some fractal structures can be obtained starting from
binary periodic distributions [2, 3].

In this paper, we want to show that different
complex forms can also be constructed by means of
continuous functions.

This fact is important for applications in the
processing of optical signals where some type of
geometry can be required in the final intensity
distribution.

It is also our interest to be able to develop the
initial mathematical foundations for the construction
of complex regular objects that can be used as
diffraction gratings, and to study the properties of the
scattered electromagnetic ficlds from these structures
[4-7]. In this way, analog and digital fractal signals
can be represented through periodic functions [8].

The method used here to represent fractal sets
through the product superposition of periodic
components, can be related with the Iterated Function
Systems (IFS) method [9]. This means that, using a
sequence of scts as union of disjoined intervals, the
necessary intersection operations among the domains
distributed in a periodically way can be carried out.

In this paper we build gratings with complex
geometry, which can be fractal, and we demonstrate

that the scaling factor included in such structures is
directly included in the diffracted field at the
Fraunhofer region. Some of such structures can be
fractals and also we use real scaling factors.

2 Mathematic Foundations

A general expression for the product superposition
between periodic scaled functions is [10, 11]:
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A very simple class of periodic functions which can
be used in the present study are, for example, the
trigonometric  functions. Then, we study the
diffraction from gratings defined as C=cos” or C=sin”
in Eq. (1). These type of gratings are plotted in Fig. 1,
where the periodic components and the product in
each step are shown.

21 Far-field Diffraction

The electromagnetic field Ufx,,y;.z) at the Fraunhofer
region, for the superposition of two transmitances
with a rotation between them, can be obtained from
the general expression:
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being (x,v,z) the system of coordinates on the
transmittance and (x;,,,z) the system of coordinates
on a transversal plane to the propagation along z. The
operator 3{ } indicates the Fourier transform in the

space of frequencies.

3 Self-similarity Analysis

Now, we develop a theoretical study for the intensity
distribution at the far field, considering cases in
which the scaling factor s can take a real value,
generalizing the scaling concept for non integer
values.

A method for measuring the characteristic scaling
factor of fractal structures was introduced by using
the self-similarity function, defined as the correlation
of this structure and a magnified version of itself.
Although this parameter was applied initially to study
the diffraction from Cantor gratings, later studies
were carried out for other situations. It has been
observed that the self-similarity function has a period
that coincides with powers of s, although the values
of the peaks for such function depend on the order or
state of the fractal object. Here, fractal distribution of
intensity, obtained from the diffraction of complex
structures built wsing Eq. 1, with order 4, 5 and 6,
have been used.

The self-similarity function is defined as:
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being R the region where this parameter is calculated
and m 1s a independent variable which scale the
intensity distribution.

The results obtained for some values of s real-
valued are shown in Fig. 2, where the correlation
peaks correspond to the power of s. We can observe
that, in accordance with the scaling factor, the
contrast varies with the increases of the number of
periodic components included in the product. This is
related with the form in that the crests and the valleys
of the function components are distributed into the
product. All the cases are for C=cos® and C=sin" with
a scaling factor s=2, 3, 3.5 and 4 respectively. In this
way, we have demonstrated that the scaling factor is

included in the diffraction patterns obtained with such
transmittance.

4 Conclusion
A method to obtain continuous prefractal functions,
by means of a simple method, is implemented. We
used the well-known results for fractal binary
functions, for which the construction is made through
periodic functions (with values 0 and 1). Cosine and
sine functions are used here, to obtain gratings with
complex structure. Then, we conclude that the results
for discrete signals can be extrapolated for continuous
functions and the diffracted intensity can be
characterized through the self-similarity function.
Another interesting result is the possibility to use
scaling factors with real values, which are clearly
reflected in the self-similarity function for the
diffracted intensity.
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Fig. 1 - An example to obtain complex grating using periodic continuous functions C=cos”, with an
scaling factor s=3.

-0.5

0.0 0.5

spatial coordinate

(b)

0.8+

0.2

0.0

-0.5 0o

spatial coordinate

(c)

0.8+

-1

L Jl s

spatial coordinate

(d)

0



Self-similarity

Self-similarity

1.0

0.8

0.6

04!

0.2

-0.2 4

-0.4

1.0

T T T T T T T T T T T T T T T
00 05 1.0 1.5 2.0 2.5 3.0 3.5 40 45

Magnification, log,(m)

(a)

0.8

b
o
1

=
b
1

0.2

0.0

T T T
0.5 1.0 1.5 2.0 2.5 3.0

Magnification, log (m)

(b)

Self-similarity

Self-similarity

1.0

1.0

0.0

0.0

I— I T
0.5 1.0 1.5 2.0 2.5

Magnification, log, (m)

(c)

0.0

T T T i T T T
0.5 1.0 1.5 2.0

Magnification, log (m)

(d)

Fig. 2 — Self-similarity function, C=cos” (solid linc) and C=sin" (dot line), for different scaling
factors: (a) s=2, (b) s=3, (c) s=3.5 and (d) s=4.



