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Abstract: - The properties of the diffracted field, when two Cantor diffraction gratings are superimposed are
important in order to establish the relationships between the geometry of each fractal grating and the
corresponding structure of the diffracted field. At the present paper, the case for studying is the characterization
of field in the Fraunhofer region, into each envelope of diffraction, using the self-similarity function. For such
problem it is shown that it is more appropriate the calculation on the modulus of the electromagnetic field,
mstead of using the intensity distribution. To exemplify, we use Cantor gratings with fractal dimensions

D=n2/n3 and D=03.
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1 Introduction

The study of diffraction by using optical gratings and
the applications of optics methods for image
processing are fundamental arcas of science and
technology. For different applications, as those of our
interest, diffraction gratings have been used with
periodic  and  quasi-periodic  structures  [1,2].
However, there are few works where different
geometries (including periodic and fractal structures)
and their interaction with clectromagnetic waves are
studied [3-6]. In these cases, the point of view for
such studies is in a general sense, and the periodic
and quasi-periodic cases are specific examples.

A very valuable result from the point of view of
the optical theory has been the introduction of the
self-similarity function [7] which allows to evaluate
the correlation degree (or fractality) between the
intensity distribution of the clectromagnetic ficld with
a magnified version of itself.

From the point of view of the classical optics,
there are many interesting effects that involve the
superposition of diffraction gratings. These results
can also be extended to the case of random objects.
Furthermore, the basic properties can be applied for
information processing by using optics methods. The
generalization of properties toward new geometries
would allow the extension of these methods and
possibilities for the characterization of objects
through the processing of optics signals [8, 9].

Here, we implement a simple mathematical
formalism for the study of the self-similarity function
when two Cantor fractal gratings, with a rotation
between them, are superimposed. By using
computational methods, we generate images of
diffraction patterns for fractal Cantor gratings. With
such results, we can study the varations in the self-
similarity function, according with the directions on
the plane that contain both diffraction gratings. This
permits us to introduce the self-similarity tensor, that
can be easily related with the directional properties
on a surface.

2 Mathematical Basis

The method using periodic components to build
fractal Cantor sets already has been used in previous
papers [10, 11]. Beginning from a sequence of sets A
periodically distributed and included into the initial
domain A°;
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where H,, denotes contractions on the initial set 4°. If
we use the characteristic function, defined as:
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Then, for a certain ¥, the resulting invariant set is
obtained with the operation:
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which represents a prefractal set. In the mathematical
strict sense N—<o is the fractal set. Two applications
of this method is illustrated in Fig. 1.
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Fig. 1 — Cantor bars for different dimension: (a)
D=In2/In3 and (b) D=0.5.

2.1 Superposition of Cantor sets

In this section, the mathematical expression for the
superposition of two Cantor fractals when an angular
displacement between them is taken into account is
obtained, around a point of the x-y plane, where they
are contained. An important theorem about the
intersection between two fractal sets can be seen in
Ref. [12], that will be useful for the construction that
we want to make.

When there are two fractal sets with an angular
displacement between them, denoted through a rigid
movement o, the characteristic function from Eq. (3)
can be written, using rectangular functions:
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where it has also been supposed, for further
simplicity, that the structure represented through the
set A" preserve the symmetry along the y axis, such as
can be seen in Fig. 2.

Fig. 2 — Superposition of two gratings with an
angular difference between them.

For the expression in Eq. (5) is simple to show
that the central points on the x-axis and the width of
the intervals of each rectangular function before and
later of the rotation, are related through [13]:
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where cach singular domain have width A, (=L/3™")
and the central points are given by:
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{ and k are parameters indicating the order of the
prefractal structure.

3 Field in the Fraunhofer Region

The clectromagnetic ficld Ufx,,v,,z) at the Fraunhofer
region, for the superposition of two transmitances
with a rotation between them, can be obtained from
the general expression:

U(x,,3,,2) o U (x,, v,,00} ®)

being (xyv,z) the system of coordinates on the
transmittance and ¢x,,y,,z) the system of coordinates
on a transversal plane to the propagation along z. The
operator 3{ } indicates the Fourier transform in the
space of frequencies.

If a density function is considered to represent two
fractal transmittances, with an angular rotation &
between them, the electromagnetic field for the
superposition of two Cantor gratings, can be
expressed in a simple way through:
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where this expression is divided in two terms: a form
factor (given by the functions sinc) and a structure
factor (given by the double sum). The first term is
related with the envelope of the diffraction pattern
and the second with the fine structure, that is to say
the form in which the smallest elements are

distributed into the total structure that produce the
diffraction.

3 Results Obtained

The degree of fractality in the clectromagnetic ficld
diffracted from Cantor fractal gratings can be
quantified through the self-similarity function, which
has already been defined as the correlation between
the field intensity and a magnified version of itself
[7]- Tt is calculated into a region R for the intensity
distribution function, normalized with the envelope of
this distribution. It has been observed that the self-
similarity function has a certain periodicity which
coincides with powers of the scaling factor of the
Cantor fractal.

3.1 Self-similarity along a direction

Now, we define the self-similarity function of the
clectromagnetic field is defined, along one
coordinate, for the far field region. Here, the self-
similarity function on the modulus of the
clectromagnetic field is calculated and not on the
distribution of intensity, as originally defined.

The case of two-dimensional fractal gratings is
considered with the self-similarity calculated for the x
axis, which 1s defined as:
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Single Cantor sets are used and then, because it is a
two-dimensional grating which have variations along
only one coordinate. The characterization through the
sclf-similarity function can be observed at Fig. 3, for
the superposition of Cantor gratings with scaling
factor 3 and 4 respectively.

Fig. 4(a) shows the result that corresponds to the
sclf-similarity calculated along a direction that has an
angle of 45 degrees with the coordinate axes, but for
two Cantor gratings with different dimension for an
angle of 90 degrees between them. Each fractal
grating have a scaling factor of 3 and 4 respectively
and we can see the corresponding peaks present in the
figures. Fig. 4(b) shows the results of self-similarity
corresponding to an angle of 30 degrees between both
fractal gratings, equally calculated along a direction
of 45 degrees. In all cases it can be seen that the
scaling factor of each grating are present, although



with smaller contrast that for the main directions
along the x and y axes.
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Fig. 3 — Self-similarity for different scaling factor in
the grating: (a) s=3 and (b) s=4.

2.1 Self-similarity Tensor.

In many cases two or more effects can be combined,
therefore it is useful to define a composed self-
similarity function. That is to say, in some cases it is
necessary to determine the variation along a specific
direction, knowing the properties along principal
directions. We introduce for this the self-similarity
tensor given by:
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which correlates the distributions of intensity for two
positions along one or two principal axis.
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Fig. 4 — Self-similarity along a direction for two
different angles between both transmittances: (a) 90
degree and (b) 30 degree.

4 Conclusion

The study of diffraction by optical fractal gratings for
applications to the optical information processing has
been presented in this paper. We have seen some
interesting properties of the self-similarity function
introduced by T. Asakura et al. [7], related with the
angular superposition of Cantor gratings. The subject
of study of diffraction by fractal gratings can be
casily extended to random and quasi-random
structures.

Since the construction method of fractal structures is
related with the corresponding structure of the
diffracted field, an introduction involving the



construction of Cantor gratings from periodic
components was carried out.

The characteristics of the self-similarity function
when two Cantor gratings are superimposed with an
angular displacement between them were presented.
Gratings with equal and different fractal dimension
were used, and the self-similarity function reveals us
the characteristics of fractality in the diffracted field
into the Fraunhofer region. The scaling factors for
both gratings are present in the field, although the
correlation with the main direction (along the
direction of fractality of the grating) is smaller when
the angle is near to 45 degrees. However, the
correlation of the modulus of field with itself along
different  directions  maintains  the  peaks
corresponding to the scaling factors. This way,
different class of correlation (or self-similarity
functions) can be defined inside the envelope of the
diffraction pattern to characterize the structure of the
clectromagnetic field. Finally, it is worthy to
highlight that the self-similarity calculations are
developed on the modulus of the electromagnetic
field (or the square root in the intensity measured)
because it shows a bigger contrast regarding the
results using the distribution of intensity.
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