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Abstract: - In this paper we successfully develop an intelligent parameters extraction and optimal TCAD tool for
device and circuit modeling and simulation. This novel approach is based on the monotone iterative method as
well as the genetic algorithm to solve a set of nonlinear equations. The approach can be applied to automatically
extract model parameters with high accuracy and rapid convergence rate. This novel simulation methodology
provides various practical applications in electrical engineering, such as nanodevice I-V characterization, RF
circuit optimization, and system on chip functional design. Numerical results for a heterojunction bipolar
transistor (HBT) circuit are presented to demonstrate the accuracy, efficiency, and robustness of the method.
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1 Introduction

The technology computer aided design (TCAD)
provides an alternative tool to analyze the intrinsic
and extrinsic electrical behavior of MOSFET
structures. It has been of great interests that to model
the I-V characteristics of submicron devices with the
equivalent circuit approach. However, parameters of
the circuit model to be extracted for an optimal
design of the device I-V characterization is a
time-consuming task. The conventional trial-and-
error approach for the parameters extraction can be
further improved with our computational intelligence
approach.

In recent years, the computational intelligence has
been of great interests and has provided an alternative
for solving, such as the optimization problems arising
from science, engineering, and social science. The
evolutionary computation is one of the premier
approaches in the field of intelligent computing; it
covers a quite wide range in real world applications,
such as combinatorial and numerical optimizations,
supervised and unsupervised learning, co-evolution
and collective behaviors, evolutionary design and
evolvable hardware, and molecular and quantum
computing, etc. Based on the metaphors from
biological evolution, genetic algorithm (GA) is a
global optimal strategy, which was first proposed by
Holland [1]. In genetic algorithms, all unknowns or

variables to be optimized are represented as genes on
a chromosome, so-called “string”, and a measure for
the optimization is given as a fitness function to the
surrounding environment. The optimization is
realized by the breeding procedure that mimics
sexual reproduction and natural selection. Through
generations, strings that survive the natural selection
pass their genetic code to their offsprings, while
strings poorly fit to the environment evolves to adapt
more favorably to the environment, which brings the
optimized values for maximizing the fitness function.
The genetic algorithm has its random, but additional
information exchanging for memory components
make it explores the vast solution space intelligently.

The GA is an optimization approach, so it has been
of great interests and a wide rang of applications
[2-5]. Especially, in microelectronics it has been
applied to various aspects in the VLSI design area
[6-8]. Examples include cell placement, channel
routing, test pattern generation and design for test,
and signal processing. However, to the best of our
knowledge, so far there is no any GAs applied in the
I-V curves optimization and model parameters
extraction for submicron semiconductor device and
VLSI circuit.

In this paper, we for the first time propose a GA
optimization technique for semiconductor device [-V
curves characterization and model parameters



extraction in the advanced design and applications of
submicron semiconductor device and VLSI circuit.
According to a specified circuit equivalent model, the
KVL or/and KCL circuit theories, a set of governing
ordinary differential equations (ODEs) is formulated
and solved for device characteristics systematically.
Our approach is to solve such nonlinear equivalent
equations to obtain the operation of device or circuit
behavior with the proposed monotone iterative (MI)
method in our earlier works [9-16]. The computed
results are further improved and optimized
automatically with a genetic algorithm directly. The
proposed GA has a good optimization result in the
model parameters extraction when the desired
specification or function is prescribed. Some
dominate weight parameters among lots numerical
parameters can be estimated with this intelligent and
robust solution methodology.

This paper is organized as follows. In Sec. 2, we
state the device model as well as the VLSI circuit
equivalent problem, and formulate the corresponding
nonlinear equations for a specified HBT device that
operates at DC or AC condition. Sec. 3 discusses the
MI and GA methods applied in the solution and
optimization of nonlinear equations. Sec. 4 presents
the computed results for the HBT circuit optimization
problem. Comparison result is reported to show the
good accuracy of the method. In addition, related
criteria including fitness are also demonstrated to
show the intelligence and robustness of the method.
In Sec. 5, we draw the conclusion and suggest the
future works.

2 A HBT Circuit Model

As shown in Fig. 1, the simulation model is firstly
formulated with circuit nodal equations, where the
Gummel-Poon large signal Model is used in the
simulation [17-18]. For the HBT device, where the
Early effect can be ignored because high doping
concentration in the Base of HBT.

Fig. 1. A HBT circuit for the DC analysis.

The circuit for DC analysis and two-tone AC
characteristics simulation are shown in Figs. 1 and 2.

First of all, the DC circuit is simulated to find the DC
solutions. The result shows the very good accuracy of
the proposed method. The similar method is then can
be further applied to simulate the circuit with a
two-tone input signal (Fig. 2). The HBT model
applied in the DC simulation, as shown in Fig. 3, is
so-called the Gummel-Poon large signal model. For
node C, we write the corresponding circuit node
equation as shown in equation (1). Similarly, we have
the following set of equations to be solved both in DC
and AC conditions. For nodes E, B, BX, CX, and EX
the equations are formulated.
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The equation (1)-(6) forms the nonlinear ODEs for
a HBT circuit operating in DC and AC conditions.
For the DC analysis, this model becomes a set of
coupled nonlinear algebraic equations. The conven-
tional approach to solve this set of nonlinear
equations is applied the Newton’s method. However,
the Newton’s method converges only with the initial
guess is in the neighborhood of the exact solution.
This leads to sufficiently difficult in the practical



implementation of VLSI circuit simulation. Because
it is impossible that we can figure out the exact
solution of the model, to apply the Newton’s method
for large scale VLSI circuit simulation often require
special treatment for finding a closed solution to
approach the final solution iteratively. In this work,
we focus here on the DC analysis and optimization.

This approach is applied our proposed MI as well
as a GA method. We have successfully applied the
MI method for the numerical solution of
semiconductor device equation as well as VLSI
circuit equations [9-16]. This approach converges
globally and has good accuracy for practical
applications. With the similar approach, the AC
analysis is also can be computed directly. We can
find including physical constants there are more that
thirty different parameters (partially listed in Tab. 1)
should be evaluated when solving both the circuit DC
and AC characteristics. As shown in Fig. 3, the model
is the Gummel-Poon large signal model. The details
of these physical models and quantities can be found,
for example in [17-18].

Fig. 2. A HBT circuit for the AC signal simulation.

As shown in Fig. 3, there are current and capacitor
terms included in the Gummel-Poon model. These
models are rather complicated and have strong
nonlinear responses with respect to the input signal.
In our numerical experience, the MI method solves
the nonlinear circuit model including these nonlinear
equations have very good efficiency and robustness.

To obtain the device [-V curve as shown in Fig. 4,
the we have to solve the above equations (1)-(6) in
the DC or AC conditions and then adjust all possible
parameters such that the I-V curve of the HBT circuit
meets the specified engineering requirement. This
task is not only an empirical-based but also
time-consuming job. Due to the local and sensitive
property, those circuit simulator based on the
Newton’s method (such as the famous SPICE circuit
simulator) have their limitations in practical

applications. The MI and GA methods applied here
for the device I-V curves characterization and
optimization have a significantly improvement in the
development of TCAD and ECAD.
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Fig. 3. The Gummel-Poon equivalent circuit model.
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Fig. 4. An illustration of the I-V curve for the HBT
device.

3 Computational Techniques

In this section, we present the MI and GA methods
for the optimization of the model. The MI method is
applied for the solution of the nonlinear equations
from the VLSI circuit formulation. After the solution
procedure, we further use a GA method to optimize
the parameters such that the DC I-V characteristics
satisfy the desired specification. The GA applied in
this work includes some steps: gene encoding, fitness
function, selection, reproduction, and mutation.



Table. 1. A list of parameters to be extracted fora HBT
equivalent circuit model.

R, 4.8732 I, 0.5
R, 14.13382 | B, 0.24
R, 9.39364 | 118.27
R, 4.80295 | N 1.0001
I 12767 | N, 1.9764
Iy, 230" | N, 0.9937
Iy, 3.00e™® N, 2.1
I, 5.00e”

The GA searches for an optimal solution from a
population where each individual chromosome
represents solution candidate. Each chromosome has
to be evaluated by the environment fitness function,
only a part of whole population in this generation can
be selected into next generation. The selected
chromosomes with higher fitness score have good
building block. The selected chromosomes, so-called
parent generations, generate their children by some
breeding scheme just like the crossover and mutation.
It’s obvious that the averaged fitting score of each
population will increase if the generation increases.
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Fig. 5. The flowchart of the MI method for the
HBT circuit DC analysis.

As shown in Fig. 5, we present the MI algorithm
for the solution of the nonlinear algebraic equations.
We solve the equations with the waveform relaxation
method to decouple the equations. Each decoupled
equation is solved with the MI method [14-15]. We

state the procedure of the GA used in this work step
by step.

Step. 1. Gene encoding. In this circuit model, there
are more than 15 parameters to be extracted. R, R,,,

R, , R. are with physical meaning, and the others
]S ’ BR’ ]S('L ’ ]SEL ’ BF’ NR’ N('L’ NF’ NE’ [KF’
I, are parameters to be found. Because each

parameter is a floating point number, we represent a
floating point number in a binary string. Then we
encode these parameters into chromosomes by binary
strings representing floating point numbers. The
advantage is to save memory space, and we can
easily set the resolution of the variables with better
results in the crossover and mutation.

Step. 2. Fitness function. When a large amount of
chromosomes carrying different parameters set is
generated, a method to measure adaptability of each
chromosome is required. Here we consider the fitness
function and the formula is

Fitness(x) = —i NWA(T, -G))* .

Step. 3. Selection. Once the adaptability measure-
ment of whole chromosomes of the group is done, we
need to select the chromosomes with higher score, to
save them for the next generation evolutation, and to
generate new chromosomes. Fig. 6 shows the applied
Roulette Wheel (RW) selection in this step.

1. Sum of fitness of all the population members; named
as total fitness (Fsum).

2. Generate a random number (n) between 0 and total
fitness Fsum

3. Return the first population member whose fitness,
add to the fitness of the preceding population
members, is greater than or equal to n.

Fig. 6. A pseudo code for the RW selection algorithm.

Step. 4. Reproduction. We apply the multi-point
crossover method to mate two selected parents and
generate the next generation. The number and
position of points to crossover are determined
randomly. The expression of this method is shown in
Fig. 7.

ParentA = [Gal,Ga2,Ga3, ..., GaN]

ParentB = [Gb1,Gb2,GDb3, ..., GbN]

Number of crossover points = 2

Multi-Cross Over Point =p, q

Offspringl = [Gal, Ga2 ... Gap, Gb(p+1), Gb(p+2) ...
Gb(q), Ga(q+1), Ga(q+2) ... Ga(N)

Offspring2 = [Gb1, Gb2 ... Gbp, Ga(p+1), Ga(p+2) ...
Ga(q), Gb(g+1), Gb(q+2) ... Gb(N)

Fig. 7. The multi-point crossover method.




Step. 5. Mutation. When all chromosomes of the next
generation are generated, mutation can change
factors of some chromosomes directly. The
chromosomes and their position of factors will be
determined with random. In our work, the
chromosome mutation probability constant M and
the factor mutation probability constant M, will
select the number and position of the mutation.

4 Results and Discussion

We present the results of the DC I-V curves, where
the evolutional I-V curves are included to show the
novelty of the method. The fitness results give the
efficiency of this simulation. For a single I-V point
evolution, Fig. 8 shows there are more efficient
results if we use the proposed GA to find the optimal
parameters with 4 variables than it with 15 variables.
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Fig. 8. A plot of the fitness score with various
number of evolution variables for the single
DC I-V point simulation.
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Fig. 9. A plot of the mutation rate and fitness score
for the single DC I-V point simulation.

As shown in Fig. 9, when the Mc equals 0.05, the
average fitness score grow up fast, and as long as the
Mc increases, the evolution speed decreases. We can

say that the overhead mutation rate will affect the
diversity of this population, and it will not tend to an
optimal solution easily. Fig. 10 shows that the fitness
score versus the generations. We find the evolution
with more variables has larger search domain and
hence it has better score after more generations.
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Fig. 10. A plot of the fitness score with various
number of evolution variables for the single
DC I-V curve simulation.

As shown in Fig. 11, we further present the
difference of the fitness score for the single DC [-V
curve simulation and evolution that with or without a
specified weight function. Our simulation shows that
the method with the weight function it better than the
other. Fig. 12 shows the evolutions of the I-V curve.
We start from an arbitrary [-V curve and our
simulator will approach to the desired final I-V curve.
Based on the MI and GA methods, the above process,
from a given [-V curve to the final optimal I-V curve,
is solved and evolved automatically. Compared with
the conventional trial-and-error methodology to
extract optimal parameters of the circuit model, our
novel approach successfully reduces the complex
procedures and calculating time.
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Fig. 11. Comparison of the method with and without
the weight function for the single DC I-V
curve simulation and optimization.
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Fig. 12. An illustration of the single DC I-V curve
approximation.
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S Conclusion

We for the first time have successfully applied the
MI and GA methods to solve and optimize the DC
I-V characteristics of the HBT device. The VLSI
equivalent circuit model is utilized to model the HBT
deice, where the nonlinear equations are solved with
the MI method. The computed results are optimized
with our proposed GA method. Numerical results for
the HBT device have been presented to show the
accuracy, efficiency, and robustness of the method.
This novel simulation provides an alternative in the
advanced applications of TCAD and ECAD.
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