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Abstract: - The present paper is about the design of a finite time synchronization algorithm applied to the 
Lorenz chaotic system. Lyapunov theory is used to prove finite time convergence. 
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1   Introduction 
The design of systems with finite time convergence 
has been studied, among others, in  [6], [8], and [1]. 
Lately the synchronization problem has been of 
great interest, see for example, [2], [3], [4], [5] and 
references there in; however, no one of them has 
considered the problem of finite time convergence. 
In the case of discrete systems, there is a result of 
finite time convergence (see [7]). The objective of 
this paper is to present a finite time synchronization 
algorithm for the Lorenz chaotic system (the 
continuous case). Lyapunov theory is used to prove 
finite time convergence. Simulation results are 
shown to support our main result. 
 
 

2   Problem Formulation 
The Lorenz system is given by 
 
 
                                                                                (1) 

 
where σ, r, and b are constant parameters. With 
σ=16, r=45.6  and b=4, the Lorenz system presents 
chaotic behavior. 
Remark 1 For electronics implementation of the 
system (1), it is suggested to use a transformation of 
variables to avoid wide dynamics range (see [4]). 

 
The system (1) is referred as the transmitter, where 
x(t) is the transmitted signal used by the receiver 
system given by 

 
 
                                                                                (2) 
 
 
where k1 is a positive constant and sign(.) is the Sign 
function which is one if the argument is positive, 
minus one if the argument is negative, and zero if 
the argument is zero. The above dynamics system is 
a modification of the  receiver system proposed in 
[4] to get finite time convergence. This receiver 
system only use the transmitted signal as its input. 
 
Let us define the state errors between the transmitter 
system and the receiver system one as 
 
                                                                                (3) 
 
Subtracting (2) from (1) and using (3) we have 
 
 
 

                                                                  (4) 
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The synchronization problem can be stated using the 
error dynamics (4) and it is equivalent to asymptotic 
stabilice the error dynamics. The finite time 
synchronization problem consists that for any initial 
conditions e1(0), e2(0) and e3(0), the solution of the 
system (4) (unique in forward time!) e1(t), e2(t) and 
e3(t), reach the origin (e1=e2=e3=0) in finite time, 
i.e, there exists a settling time ts such that   
 
 
 
and 
 

sttte ≥∀= 0)(  

 
where e(t)=[e1  e2  e3 ] . 

 
This settling time ts is a function of the initial 
conditions (see [6]). In the paper cited in [8], in its 
theorem 2 says that the system converges in finite 
time if given a Lyapunov function V, its time 
derivative along of the trajectories of the system 
under study, is bounded by a negative number 

( ,kV −≤&  k>0). Global finite time convergence is 
obtained if the Lyapunov function V is proper (see 
[8]).  
 
To prove finite time convergence for the system (4), 
the next Lyapunov function (a proper one) is 
proposed 
 
 
 
 
 
where its time derivative along of the trajectories of 
the system (4) yields 
 
 
 
 
 
 
 
 

 
Such that with k1>0, the finite time convergence for 
the system (4) is obtained after theorem 2 in [8] is 
invoked. 
 
To estimate the settling time, we can integrate the 
expression obtained above,  
 

                                    .                             (5) 

Integrating (5) from 0 to ts, we obtain 
 
 
 
which means that 
 
 
 
 

                                                                    . 
 
 

 

3   Simulation Results 
The systems (1) and (2) were programmed using 
MathLab. Fig. 1 shows the state variables of the 
transmitter and the receiver. The initial conditions 
used were x(0)=5, y(0)=-10, z(0)=15, and xr(0)=-5, 
yr(0)=10, and  zr(0)=-15. The value of k1 used was 
one. Fig. 2 shows the error dynamics.  
 

 
 

Fig.1 State variables of the transmitter (continuous 
lines) and the receiver (dotted lines): Top picture is x 
and xr, middle picture is y and yr, and bottom picture 

is z and zr. 
 

 

 
 

Fig. 2 State variables of the error dynamics: Top 
picture is e1, middle picture is e2, and bottom picture 

is e3. 



Remark 2 The synchronization algorithm presented 
here can be used to implement chaotic signal 
masking systems, as shown in [4]. 
 

 
4   Conclusion 
In the present paper a finite time synchronization 
algorithm is presented using the Lorenz system. 
Lyapunov theory is used to prove finite time 
convergence. This synchronization algorithm can be 
used to design chaotic signal masking systems, as 
shown in [4]. Numerical results are shown to 
support our results. 
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