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Abstract: - This paper presents a state observer for nonlinear hybrid systems characterized by a finite
number of discrete modes, in which the switching between different modes is commanded by an external
function. It is assumed that at each mode the system is globally drift-observable and either is unforced
or has full relative degree. Exponential decay of the observation error is ensured provided that there
exists an upper bound on the input amplitude and a lower bound on the time between two consecutive
switches. Computer simulations have shown good performances of the proposed observer.
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1 Introduction

Many recent papers deal with control problems
on hybrid systems (see e.g. [3,4,6,11,12] and ref-
erences therein). On the other hand, smaller at-
tention has been devoted to the problem of state
observation for hybrid systems in a determinis-
tic setting. The problem of state estimation for
switching linear systems in a stochastic frame-
work has been investigated first in [1] for discrete
time-systems. Recent papers on the topic are
[13], for the continuous-time case, and [7] for the
discrete-time case. The case of nonlinear stochas-
tic hybrid systems has been investigated in [9],
where the optimal state estimator is presented
in terms of a Zakai-type equation that gives the
evolution of the conditional density of the state
variable.

In the stochastic setting, the switching be-
tween discrete modes is commanded by a finite-
state Markov chain. In the deterministic set-
ting the switching times and the corresponding
discrete modes are assumed known. The state
observation problem for deterministic switching
discrete-time linear systems is investigated in [2],
in which a Luenberger switching observer with
scheduled gains is proposed.

This paper studies the problem of state obser-
vation, in a deterministic setting, for a class of
hybrid automata described by switching nonlin-
ear differential equations. A switching observer is
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proposed and exponential decay of the observa-
tion error is proved under suitable assumptions.
The observer gain is easy to compute and the ob-
servation algorithm is easy to implement. Before
to present the observer, some preliminaries taken
from [8,5] are reported. The paper closes with
some simulation results on a simplified model of
an internal combustion engine, that demonstrate
the high effectiveness of the proposed algorithm.

2 Hybrid Automata
Let V = {1,2,...,N}, and let f,g,h be vector
functions

f,9:VxR"— IR,

. n (1)
h:Vx R"— R,

smooth with respect to the variable in IR™. In this
paper we consider the class of hybrid automata
characterized by IV discrete modes, described by
nonlinear differential equations of the type

#(t) = fv,x(t)) + g(v, x(t))u(t), x(0) = o
y(t) = h(v,z(t)).
(2)

For each v € V the system (2) describes the
continuous state flow in the v-th discrete mode.
The discrete variable v is piecewise constant, so
that the system (2) is piecewise smooth. When
a change occurs in the variable v (jump) also the
continuous state x(t) may undergo a discontinu-
ous change. We assume the existence of a func-
tion

R:(VxV)"xR"— R"

where (V xWV)*={(i,j) e VxV: i#j} ®)



which assigns new values to the continuous state
variable when a jump occurs from one discrete
mode ¢ to another discrete mode j, (i,7) € (V x
V)*.

We assume that the mode changes in the
differential equation (2) are commanded by a
piecewise constant right-continuous function o :
IRt — V, that is available in real time.

Denoting with t;, j = 1,2,... the switching
times for o(t), the hybrid automaton (2) satisfies
the equations

(t)
(t;)
(

y(t)

flo(t),z(t) + g(o(t), x(t))u(t), t # 1,
R(U(tj_l), O’(tj),.’IZ(tj_)),
h(o(t),x(t)),

(4)

x(t;) = lim x(t), (5)

t—t
M

where

Note that o(t) piecewise constant right-continuous
is such that o(t;—1) = o(t;) # o(t;).

3 An Observer for Smooth
Nonlinear Systems

The observer for nonlinear switching systems pro-
posed in this paper is an extension of the one pre-
sented in [8, 5] for smooth nonlinear systems, and
therefore it is useful to recall in short the relevant
notations and results.

When considering the problem of state obser-
vation for nonlinear systems of the type

t>0 (6)

where z(t) € R", u(t), y(t) € IR, and the vector
functions f, g and h are C*°, a key-role is played
by the so called drift-observability map, defined
as

z = [h(z) Lgh(x) --- L?_lh(:l:)}T: o(x), (7)

where the symbol L];h(*r) denotes the k-th order
repeated Lie derivative of the function h along
the vector field f.

Definition 1. The system (6) is said to be glob-

ally drift-observable if the function z = ®(x) is a
diffeomorphism in all IR™. [

The main assumption needed in the paper is
the following:

Hy: The system (6) is globally drift-observable,
and the diffeomorphism z = ®(x) and its in-
verse © = ®~1(2) are globally uniformly Lip-
schitz in IR™.

This means that in all IR™

[@(21) — @(x2)| < ve [lz1 — 22|, ®)
1271 (z1) = 27 (22)| < @121 — 2.
(y¢ and g1 denote the Lipschitz constants of
the maps ®(x) and ®71(2)).
If system (6) is globally drift-observable, the
Jacobian

Q) = 220 )

is nonsingular for all z € R", and z = ®(z) de-
fines a global change of coordinates. Defining the
Brunowski triple (A, By, Cp) (see [8, 5]), by def-
inition of the map ® it follows

Q(z)f(x) = Ap®(2)+By L% (x),

h(z) = Cp®(x).

(10)
Differentiating z(t) = ®(x(t)) w.r.t. time, using
properties (10) we obtain

2(t) = Apz(t) + P(x,u), (a1

where P(z,u) = ByLh(z) + Q(z)g(x)u. (12)

The system (6) is written in z-coordinates as

() = Apz(t) + P(2(1), u(t)),

y(t) = Cyz(t) (13)

where P(z,u) = P(® '(2),u),  (14)

The second assumption needed to ensure ex-
ponential convergence is the following:

Hy: P(z,u) is globally uniformly Lipschitz with

respect to z, and the Lipschitz coefficient v

is a non decreasing function of |ul.
1P(z1,u) = P(z2,u)]| < v3(lul)lz1 = 22]. (15)
The third assumption needed in this paper re-
quires the following definition:
Definition 2.  The triple (f(z),g(z), h(x)) is
said to have observation relative degree equal to r
in a set Q C IR™ if
Vo€ Q LyLhh(z) =0, k=0,1,...,r —2,
Sw € Q: Lyl h(x) #0. (16)



The third assumption is:
Hs: for system (6) the triple (f(:l:),g(:l:),h(:l:))
has observation relative degree equal to n in
all IR™.

It is easy to verify that in the case of ob-
servation relative degree equal to n the function
P(x,u) defined in (12) can be written as

P(x,u) = By <L7}h(r(f)) + Lqu}_lh(m(t))u(t)) .

(17)
The observer studied in [5, 8] has the following
structure

FH(1) =F((8) + 9@ (D) u()
QT @)K (y(1) — h(#(1))).

The following theorem [8] can be given:

(18)

Theorem 3.  For system (6) assume that hy-
potheses Hy, Ho, H3 are satisfied and that there
exists upy such that |u(t)] < upg, fort > 0. Then,
for any positive o there exists a gain vector K for
the observer (18) and a constant i such that

l(t) — &) < pe||2(0) — 2(0)[|. (19)

4 A Switching Observer for Hybrid
Automata
When dealing with hybrid automata of the type
(4), all functions of the state that are defined in
the previous section depend also on the discrete
mode v € V. Hence, in the following the Lie
derivatives of h along f will be denoted L];h,(v, x)
and the map (7) and its inverse will be denoted
z=®(v,x) and x = ®71(v, 2), respectively. Also

the functions P and P defined in (12) and (14)
will be denoted P(v,z,u) and ]5(1),:1:, u), respec-
tively.

The proposed observer for the hybrid automa-
ton (4) has the following structure

z(t)= flo(t),2(t)) + g(o(t), #(t))u(t)
+Q7H (1), 2 (M) K (y(t) — hie (1), 4(1))),
120, tAt, j=1,2,...
#(ty) = R(o(tj-1),0(t), (1))

0P(o, x)

Q<U’ 7) = ox

where . (21)

The only design degree of freedom is the constant
observer gain K, that is responsible of the ob-
server performance.

5 Convergence Results
In this section we show that the assumptions
(Hy1—Hs) are sufficient to guarantee existence of
a gain vector K in the observer (20) that en-
sures asymptotic observation error decay. This
result is based on the capability to assign large
eigenvalues to the matrix A, — K} while keep-
ing small the norm of suitable matrices (note that
the pair Ay, Cp is observable and that matrix
Ap — KCjp has a companion structure). Let us
define a set A = {\1,..., A\, } of real eigenvalues
and let us denote with K(A) the gain such that
eig(As — K(A)Cy) = A. In [8] it is shown that if
the eigenvalues A\;, j = 1,...,n are distinct, then
V(A)(A4p — K(A)Cy)VTH(A) = diag(A), where
V(A) is a Vandermonde matrix.

The following Lemma is fundamental in the
proof of exponential decay of the observation er-
ror.

Lemma 4.  For any positive reals c¢1, co, c3,
a, there exists a set A of n reals \j, with A\, <
An—1 < ... < A1 <0, such that

M+ [VTHA))

_ (22)
+ez-Ines - [VTHA) - [VA)]) = —a.

Lemma 4 is a non trivial extension of Lemma 1 in

[8], and can be proved following the same lines.
The assumptions needed in this paper to work

out the proof of exponential decay of the obser-

vation error are the following;:

Hp,: foreach v € V, the triple f(v,-), g(v,-), h(v,")
satisfies hypotheses Hy, Hy and Hj of previ-
ous section (the largest among the Lipschitz
constants of the functions ®, ®~' and P over
V will be denoted V¢, v¢—1 and v, respec-
tively);

Hpo: The function R(,-,-) defined in (3) is glob-
ally Lipschitz with respect to the variable in
IR™, with Lipschitz constant vg, i.e.

P

| R(v1,v2,21) — R(v1, v2,22)|| < yrl|71 — 22|
V(’Ul,vg) € (V X V)*, Vaq, 20 € IR™. (23)

Hps: The piecewise constant right-continuous
switching function o(t) is characterized by a
minimum time interval Ty, between two con-
secutive switches, i.e. [tj 41 — t;| > Thin.



Lemma 5. Under assumption Hpi, af-
ter the switching change of coordinates z(t) =
®(o(t),x(t)), the hybrid automaton (4) can be

rewritten as

2(t) = Apz(t) + ByP((o(t), 2(t), u), t # t;,
y

2(tj) = R(o(tj—1), o (t;), 2(7)),
) (21)
where the function R : (V x V)* x R™ — IR" is

defined as

R(op,0,2) = fI’(O'k, R(oh, ok, (I)_l(O'h, Z))

(25)
Proof. The computations that led to system
(13) can be repeated for the automaton (4) be-
tween two adjacent switching times. At a switch-
ing time #; it is z(t; ) = ®(o(t;—1),=(t;)). On
the other hand the change of coordinates imposes
z(tj) = ®(o(t;),2(t;)), so that the equation that
gives the jump of the z-coordinates is obtained as

z(t;) = @(J(tj),:l:(tj»

—a(olty) (ot olty)alt)). )

Since x(t;) = ®'(o(tj-1),2(t;)), taking into
account the definition (25) the second of (24) fol-
lows. n

Lemma 6. Under the assumption Hpy the ob-
server (20) can be rewritten in the form

2(t) = Ap2(1) +BbP(< (t), 2(t), u)

) + K (y(t C’bzf) t £t @)
é(tj) :R< (fa 1) )
i(t) = d Y o(t), :2(7%)) vr >0,

where the function R is defined in (25).

Proof. The lemma states a result which is a
slight modification of equation 2.11 in [8], with
the addition of the function R. The same lines of
the proof of Theorem 5 can be followed to derive
equations (27). ]

Theorem 7. Consider the system (2). Assume
that hypotheses Hpy, Hpa, Hps are satisfied and
that there exists upar such that |u(t)| < uag, for
t > 0. Then, for any positive o there exists a gain

vector K for the observer (20) and a constant fi
such that fort > 0

() — (1) < fie= | (0)

Proof. Consider the system (4) and the observer
(20) in z-coordinates, as given by Lemmas 5 and
6, and define the observation errors

) =V )n®ll.- (29

Following the proof of Theorem 1 in [8], it follows
that in any interval [t;_q,%;) we have

—#0)]. (28)

Al nyY~(Upr VﬁlA i— tg 1
C(t) < VARV T OOt ey

(30)
At the switching times ¢; the following inequality
holds

C(t;) < VA llvere-7elVTHA) (). (32)

Substituting in (32) the inequality (30) for t = ¢;
one has

C(t;) < pa(A)er> M) (t_y), (31)

pa(A) = [V [ IVHA) [yeve-177,
pa(A) = M+ vVyg(ua) [VHA) |

Repeated application of inequality (31) for j =
1,2,...,k and using (30) for j = k + 1 yields the
following inequality that holds for t € [tg,tk+1)

¢(t) < pf(A)er2 M (0)
< ekln Ml(A)‘l‘MZ(A)tC(O) ]

(33)

(34)

Since, by assumption Hps, if t € [tg,tr41) it fol-
lows that k < t/Tin, then (34) can be rewritten
as

() < 6(#2(/\)+T m(A)) ¢(0). (35)

Note that (35) is satisfied for ¢t € [tg,tg41) for
all k = 0,1,2,..., and therefore it holds for all
t > 0. Using Lemma 4, for any chosen positive a
a vector A of eigenvalues can be found such that

p2(A) + pi(A) = —a, (36)

Tmin

so that for this choice of A, the gain vector K (A)
in the observer (20) ensures that ((t) < e~*¢(0).
Recalling the definition of { = ||[V(A)n]| it follows

IV (Qn@l < e V(O (37)



Since n(t) = z(t) — 2(t), we have

l2(t) =21 < [V A)HIVTHA) [e™*]]2(0) - 2(0)I,

(38)
and from this inequality (28) (the thesis) follows
with

=V VA vere  (39)

6 Simulation Results

This section presents simulation results on a sim-
plified model of an Internal Combustion Engine
(ICE) to which a mechanical load can be con-
nected and disconnected by means of a stiff fric-
tion clutch. This system can be described by a
hybrid automaton with two discrete modes, char-
acterized by the engagement/disengagement of
the clutch to the load shaft. The simplified ICE
model is the following:

1
Mac Mae — Mss (W,Oé)
1 T(w)( ) (40)
b= 5 (8w, 1m0¢) = f(0)w = T(0))
J(O’) =Jg+oJp,
where flo)=fe+ofL, (41)

In (40) Mg is the air mass in the cylinder, w is the
speed of the engine shaft (measured output) and
a the throttle angle (control input). (Jg,Jr),
(fe, fr) and (Tg,Tr) are the inertias, the vis-
cous friction coefficients and the resistive torques
at the engine and load shafts, respectively. The
parameter o selects the functioning mode (o = 0:
clutch disengaged; o = 1: clutch engaged)

The first equation provides a simple dynamic
model of the air mass m,. inducted per intake
stroke in the cylinder. The function mgs(w, @)
gives the steady state air mass through the throt-
tle to the cylinder as a function of the engine
speed w and of the throttle angle a. The time
constant of the transient, denoted 7(w), decreases
with the engine speed.

The second equation models the speed tran-
sient. The total inertia at the engine shaft is Jg
when the clutch is disengaged (o = 0) and Jg+.Jy,
when the clutch is engaged (¢ = 1). The same
considerations hold for the viscous friction torque
coefficient (fg + o fr) and for the resistive torque

(Tg + oTr). The term ((w,mge) provides the
combustion torque as a function of of the speed
w and of the air mass in the cylinder, mg. (the
aspired fuel mass is a function of mg.).

In the simplified model (40) the time constant
T(w), the functions mss(w, ) and B(w, my.) are
chosen as follows

1
T(w) = —,
pw

ﬁ(wa m/ac) = [;)m/ac exp <*’7(w - w>4>7

Mes(w, @) = (mo + miw)a + qo,

(42)
where the constants p, mg,m1, o, 3,7,o are pa-
rameters that characterize the ICE.

It is assumed that when the clutch is engaged
the mechanical load is at zero speed. Moreover,
it is assumed that the clutch is sufficiently stiff
to induce an instantaneous speed change on the
engine shaft, thus preserving the angular velocity
momentum. On the other hand, when the clutch
is disengaged the engine shaft speed is equal to
the load shaft speed, so that the angular veloc-
ity momentum is automatically preserved. These
conditions are expressed as follows:

(;((g)) - i’ } = (Jg + Jo)w(ty) = Jew(t]),
o(ty) =1,

(43)
It is also assumed that the constant load torques
Tk and T7, are unknown, so that we can try to
reconstruct them by modeling the resistive torque
as a third state variable with null derivative (the
ratio Tg/(Tg + T1,) is assumed known).

Defining the state variables as follows: z1 =
Mee, To = w, 3 = Tgr + o1, and the input
u = «, the hybrid model for the ICE is the fol-
lowing:

T = T(;) <m1 — Megs (m,u))
g = ﬁ(ﬂ(fﬁzﬂﬁ) — f(o)z2 — -773)7 (44)
i3 =0,

Yy = x3.

plus the jump function z(t;) = R(O’(tj_), o(ts),z(t;)),

defined, thanks to conditions (43), as

4o
R(0,1,2) = JEJfJL T2 |, (45)
Te+Tr T
Ty 3




€1

R(1,0,2) = To
Tr T
Te+Tz "3

(46)

Fig.’s 1 and 2 report some results on the re-
construction of the air mass in the cylinder and
of the load torque.

True air mass

~ Observed air mass

/
6

5‘ L L L H H L L
0 1 2 3 4 5 6 7 8 9 10
s

Fig. 1. Observed and true air mass in the cylinder.

25 T T T T T T T T T

_ True Load Torque

20 o a r AN W S S S
Y ‘ ’

" Observed Load Torque

L L L L L L L
0 1 2 3 4 5 6 7 8 9 s10

Fig. 2. Observed and true resistive load torque.

7 Conclusions

A state observer for nonlinear hybrid systems
with a finite number of discrete modes is pre-
sented in this paper. The switching between dif-
ferent modes is commanded by an external func-
tion, known in real time. At each discrete mode
the system is assumed globally drift-observable
with full relative degree. The observer gain is
easy to compute and the observation algorithm
is easy to implement. Exponential decay of the
observation error is ensured provided that there
exists a minimum time interval between consec-
utive switches. Computer simulations on a sim-
ple model of an Internal Combustion Engine have
shown good performances of the proposed ob-
server.
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