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Abstract: - A model for the dynamics of
membrane proteins in intact red blood cells was
proposed in [3]. The data are obtained with a
CCD camera. A nm-scale gold bead is attached
to a protein molecule. Differential interference
contrast (DIC) video microscopy is used to im-
age the bead, and the images are recorded by a
high-speed CCD camera. Because the beads are
smaller than the resolution limit of the micro-
scope, the bead images appear as blurred spots.
The centroid position of the bead in each image
is determined by using a tracking algorithm.

In [3] the motion of an individual protein is
modeled as a sum of three mutually indepen-
dent components: a Wiener process, a compound
Poisson process, and white Gaussian noise. This
approach allows modeling of the interactions
of the protein with various types of molecules.
Model parameters were estimated by the method
of moments applied to each of 10 equal parts of
the rajectory. Thus we obtained a histogram for
the MOM parameter estimates. In this paper,
we propose Bayesian parameter estimation based
on Gibbs sampler. The uncertainty in parame-
ter values is quantitfied via credible intervals (see
[1]).
Keywords: - Protein dynamics model, Bayesian
sampling, Markov Chain Monte Carlo.

I Introduction

This paper is based on our studies of the dy-
namics of individual protein molecules in the

membranes of intact red blood cells [7]. A gold
bead (5 to 40 nm) is attached to the molecule,
and plane images (typically 128 by 80 pixels) of
the molecule’s trajectory are recorded using DIC
video microscopy at a rate of 30 to 10,000 frames
per second.

Heuristic threshold- or moment-based algo-
rithms often used by experimenters, besides be-
ing inaccurate in strong noise, are heavily biased
when bead spots overlap and/or when a spot is
too large or bead is too close to the image edge to
fit a spot into the image frame due to the limited
view area of the microscope.

We proposed in [6] a procedure based on
the EM algorithm which estimates the not cen-
trally symmetrical bead position more accurately
adapting to possible rotations. The main idea of
the approach is to estimate parameters relevant
to the bead spot generation using a series of im-
ages, and then to solve the inverse problem by
establishing the most probable center coordinate
for each image along with other characteristics
(variance etc).

Traditionally, the motion of individual pro-
tein molecules is described as a Wiener process
(Brownian motion) or a Wiener process with
additive Gaussian white noise (see [2]). Typi-
cally, the Mean Square Distance statistic (MSD)
is used to estimate the motion parameter. An
alternative estimation technique has been pro-
posed in [4], in which a maximum likelihood
(ML) estimate is evaluated via spectral decom-
position of the process covariance matrix.
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Experimental data for the motion of a variety
of proteins show considerable deviation from the
Brownian motion model, causing instability in
the estimated parameters of motion. Thus, even
for small time intervals, some protein molecules
do not appear to undergo free diffusion (see, for
example, [8]). Free diffusion of red cell mem-
brane proteins could be restricted due to inter-
actions between the protein and a) molecules of
different sizes, e.g. lipids and other membrane
proteins; and b) the spectrin-based membrane
skeleton. A detailed physical model of this phe-
nomenon remains to be developed.

Model developed in [3] describes the effect
of protein interactions with other membrane
proteins (i.e. with large particles) as a com-
pound Poisson process with normally distributed
jumps. The assumption is that protein’s interac-
tions with large particles are rare compared to
its collisions with small particles (i.e. lipids).

In this paper, we propose Bayesian parameter
estimation for the model. This method allows to
quantify uncertainty in parameter estimates via
credible intervals (see e.g. [1]).

II Model Specification

Suppose we observe a random sequence
Y = (Y (ti), ti = iT/N, i = 0, ..., N) with in-
dependent increments, corrupted by white
Gaussian noise:

Y (ti) = aW (ti) + b

π(ti)∑
j=1

ηj + cε(ti), (1)

where a, b, c are positive constants; W (·) is a
standard Wiener process; ηj (j = 1, . . . , π(ti))
are i.i.d. standard normal variables; π(·) is a
Poisson process with rate µ; and ε(·) is standard
white Gaussian noise. All four sources of ran-
domness, W (·), π(·), ηj (j = 1, . . . , π(ti)), and
ε(·) are mutually independent.

In this formula aW (·) represents displace-
ments due to interactions between the labeled
protein and membrane lipids, b

∑π(ti)
j=1 ηj de-

scribes displacements due to interactions be-
tween the protein and other membrane proteins,
and cε(·) represents measurement noise. We let
θ denote parameters to be estimated:

θ = (a, b, c, µ). (2)

III Bayesian Formulation

In Bayesian approach, the parameters θ =
(a, b, c, µ) themselves are treated as random vari-
ables and the goal of Bayesian estimation is to
describe the posterior distribution of the parame-
ters (that is, the distribution of the parameters
given the data Y (ti)). This can only be achieved
if a prior distribution is specified for θ. In picking
a prior we are guided by the following two con-
siderations. First of all, we want to be able to
tune the hyperparameters (that is, the parame-
ters of the prior distribution) to make the prior
practically as flat as possible over the range of
plausible values for θ. Secondly, the prior should
be of the form that will be computationally con-
venient. We will coment on this second point at
the end of this section.

We consider the incremets X(ti) of the
process (1) as the observed data. These incre-
ments are representable as

X(ti) = a∆W (ti) + b

π(ti)∑
j=π(ti−1)+1

ηj + c∆ε(ti)(3)

∼ a∆W (ti) + b

∆π(ti)∑
j=1

ηj + c∆ε(ti),

ti = iT/N, i = 1, . . . , N, where

∆W (ti) = W (ti) − W (ti−1),
∆π(ti) = π(ti) − π(ti−1),
∆ε(ti) = ε(ti) − ε(ti−1).

We postulate the following prior on θ:

a−2 ∼ Gamma(αa, βa), (4)
b−2 ∼ Gamma(αb, βb),

c ∼ N(mc, σ
2
c ), c > 0 (truncated normal),

µ ∼ Gamma(αµ, βµ).

We assume that that the priors are independent.
Here the parameters of the priors

αa, βa, αb, βb, mc, σc, αµ, βµ (the so-
called hyper parameters) are constants known



in advance. We choose these constants so that
the priors look reasonably flat over the range
that we believe almost certainly contains the
true parameter values.

The posterior is too complicated to be
amenable to direct examination, we thus resort
to studying the posterior by producing a sam-
ple from it. This sample, in turn, cannot be
obtained directly. Instead we will construct a
Markov chain that will converge to the poste-
rior of interest and will simulate the parameters
with the help of this chain. More specifically, we
propose a Gibbs sampler combined with a ”data
augmentation” technique [10]. A good descrip-
tion of the data augmentation technique could be
also found in [9]. Now, the computational con-
venience we referred to in the begining of this
section should be understood as prior specifica-
tion that simplifies steps of the Gibbs sampler.

IV Gibbs Sampler.

To simplify the notations, we will use set the
time interval between observations to be equal
to 1 (T = N). Define

X = (X1, . . . ,XN ) = (X(t1), . . . ,X(tN )),
∆W = (∆W1, . . . ,∆WN ) = (∆W (t1), . . . ,∆W (tN )),
∆π = (∆π1, . . . ,∆πN ) = (∆π(t1), . . . ,∆π(tN )),
∆ε = (∆ε1, . . . ,∆εN ) = (∆ε(t1), . . . ,∆ε(tN )).

Using the language of data augmentation
technique [10], we call X the observed data and
∆π,∆ε the missing data or the unobserved vari-
ables. Together they make up what is referred
to as “augmented data”.

We start the Gibbs sampling procedure by
setting some starting values for the unobserved
variables. We then repeatedly visit each unob-
served variable and parameter in turn, each time
randomly selecting a new value for the variable
from its conditional distribution given the cur-
rent values of the other variables and parame-
ters. Schematically, our Gibbs sampler can be
represented as follows:

0. Pick a starting value for the parameters θ0

and for the vector with the number of jumps ∆π0

(to simplify the notations, we will sometimes use
θ = (a, b, c, µ)).
1. Simulate ∆ε|θ0,X,∆π0 to obtain ∆ε1.
2. Simulate ∆π|∆ε1,X, θ0 to obtain ∆π1.
3. Simulate θ|∆ε1,∆π1,X to obtain θ1.

3.1 Simulate µ|∆ε1,∆π1,X, a0, b0, c0 to ob-
tain µ1.

3.2 Simulate a|∆ε1,∆π1,X, b0, c0, µ1 to ob-
tain a1.

3.3 Simulate b|∆ε1,∆π1,X, a1, c0, µ1 to ob-
tain b1.

3.4 Simulate c|∆ε1,∆π1,X, a1, b1, µ1 to ob-
tain c1.
4. Set θ1, ∆π1 to be the new starting values and
repeat the steps 1–3.

This is a Makov chain with the posterior of
interest as its stationary distribution. Implemen-
tation of this Gibbs sampler depends on our abil-
ity to simulate from the conditional distributions
listed in steps 1–3. We derive these conditional
distributions and provide algorithm to generate
random variates from them below.

A Details of the Gibbs Sampler

We can pick any a priory reasonable values for
a, b, c, and µ as the initial values. We can then
initialize the unobserved variates ∆π by tak-
ing i.i.d. draws from ∆πinit

i ∼ Poiss(µinit). Our
starting value for the Gibbs sampler thus will be
(θ0,∆π0) = (ainit, binit, cinit, µinit,∆πinit).

In Step 1 we draw ∆ε using the classical
Backward-Forward calculations. The Forward
Calculations are represented schematically as

Find P (∆ε1|X1,∆π, θ) → P (∆ε2|X1,X2,∆π, θ)
→ · · · → P (∆εN |X1, . . . ,XN ,∆π, θ).

Given that we derived
P (∆εN |X1, . . . ,XN ,∆π, θ), we obtain a
random draw of ∆εN from this distribution
and then go backwards by drawing ∆εj from
P (∆εj|X1, . . . ,XN ,∆π,∆εN , . . . ,∆εj+1, θ):

Draw ∆εN |X,∆π, θ →
Find P (∆εN−1|X,∆π,∆εN , θ) →

Draw ∆εN−1|X,∆π,∆εN , θ → · · · →
Find P (∆ε1|X,∆π,∆εN , . . . ,∆ε2, θ) →

Draw ∆ε1|X,∆π,∆εN , . . . ,∆ε2, θ.



With the final draw of ∆ε1 in this procedure
we will have a draw from the joint distribution
P (∆ε|X,∆π, θ).1

What makes these manipulations possible is
the fact that all the distributions P that ap-
pear in Forward-Backward calculations are nor-
mal. Indeed, in the forward calculations:

P (∆ε1|X1,∆π) =
P (∆ε1,X1|∆π1)

P (X1|∆π1)
P (X1|∆π1) = N(X1|0, a2 + ∆π1b

2 + 2c2),

where N(X|m,σ2) stands for the density of nor-
mal distribution with mean m and variance σ2

evaluated at point X. Then

P (∆ε1,X1|∆π1) = P (X1|∆ε1,∆π1)P (∆ε1|∆π1)
= N(X1|c∆ε1, a

2 + ∆π1b
2)

×N(∆ε1|0, 2).
Thus,

P (∆ε1|X1,∆π1) =
N(X1|c∆ε1, a

2 + ∆π1b
2)N(∆ε1|0, 2)

N(X1|0, a2 + ∆π1b2 + 2c2)
= N(∆ε1|m1,f , σ2

1,f ),

where

σ2
1,f =

[
a2 + ∆π1b

2 + 2c2

2(a2 + ∆π1b2)

]−1

,

m1,f =
cX1

a2 + ∆π1b2
σ2

1,f =
2cX1

a2 + ∆π1b2 + 2c2
.

We proceed by induction. Suppose we have de-
rived:

P (∆εj |X1, . . . ,Xj ,∆π) = N(∆εj |mj,f , σ2
j,f )

with mj,f and σ2
j,f known. We want to derive

P (∆εj+1|X1, . . . ,Xj+1,∆π). Since

P (∆εj ,∆εj+1,Xj+1|X1, . . . ,Xj ,∆π) =
P (Xj+1|∆εj+1,∆πj+1)P (∆εj+1|∆εj)

×P (∆εj|X1, . . . ,Xj ,∆π),

where the three distributions are:

P (Xj+1|∆εj+1,∆πj+1) = N(Xj+1|c∆εj+1, a
2 + ∆πj+1b

2),

P (∆εj+1|∆εj) = N(∆εj+1| − 1
2
∆εj ,

3
2
),

P (∆εj |X1, . . . ,Xj ,∆π) = N(∆εj |mj,f , σ2
j,f ),

1In all the conditional formulas we also assume condi-
tioning on the current parameter estimates, though some-
times we do not write this explicitly.

we can show that

P (∆εj+1|X1, . . . ,Xj+1,∆π) = N(∆εj+1|mj+1,f , σ2
j+1,f )

with

σ2
j+1,f =

[
c2

a2 + ∆πj+1b2
+

4
σ2

j,f + 6

]−1

mj+1,f =

[
cXj+1

a2 + ∆πj+1b2
− 2mj,f

σ2
j,f + 6

]
σ2

j+1,f .

By analogy, having drawn ∆εN from
P (∆εN |X,∆π), we move backwards: given
∆εN , . . . ,∆εj we draw ∆εj−1 from

P (∆εj−1|X,∆π,∆εN , . . . ,∆εj) =
N(∆εj−1|mj−1,b, σ

2
j−1,b),

with

σ2
j−1,b =

[
1
6

+
1

σ2
j−1,f

]−1

,

mj−1,b =

[
mj−1,f

σ2
j−1,f

− ∆εj

3

]
σ2

j−1,b.

In Step 2, we notice that ∆πi|X,∆ε are in-
dependent since the probability mass function is

P (∆π|X,∆ε) =
N∏

i=1

P (∆πi|Xi,∆εi),

where

P (∆πi = j|Xi,∆εi) =
µj

j! e
−µN(Xi|c∆εj , a

2 + jb2)∑+∞
l=0

µl

l! e
−µN(Xi|c∆εj , a2 + lb2)

.

In Step 3.1 it is straightforward to verify that

µ|∆π ∼ Gamma(αµ +
N∑

i=1

∆πi, βµ + N).

To draw parameters a and b in Steps 3.2-3.3
we will use Metropolis-Hastings algorithm (see,
e.g., [1]). In general, to produce a draw of a
variate ξ from target distribution P (ξ), whose



density we can compute up to a normalizing con-
stant, the Metropolis-Hastings algorithm creates
a sequence of random points ξ1, ξ2, . . . whose
distribution converge to the target distribution.
Each sequence can be considered as a random
walk with stationary distribution P (ξ). Below
we list the steps of the algorithm:
1. Draw a starting point ξ0, for which P (ξ0) > 0,
from a starting distribution P0(ξ).
2. For t = 1, 2, . . . :
(a) Sample a candidate point ξ∗ from a jumping
distribution at time t, Jt(ξ∗|ξt−1) (we use the
jumping distribution to approximate the target
distribution).
(b) Calculate the ratio of importance ratios:

r =
P (ξ∗|X)Jt(ξ∗|ξt−1)
P (ξt−1)Jt(ξt−1|ξ∗)

(c) Set ξt = ξ∗ with probability min(r, 1), and
ξt = ξt−1 with probability 1 − min(r, 1)

In Step 3.2, for parameter a the target bdis-
tribution is

P (a−2|∆ε,∆π,X) ∝
P (a−2)

×
N∏

i=1

(a2 + ∆πib
2)−1/2 exp

(
− (Xi − c∆εi)2

2(a2 + ∆πib2)

)

where P (a−2) is the prior distribution

P (a−2) ∝ (a−2
)αa−1 exp

(−a−2βa

)
.

The jumping distribution:

Pjump(a−2|∆ε,∆π,X) ∝
N∏

i=1

(a2)−1/2 exp
(
−(Xi − c∆εi)2

2a2

)
P (a−2) ∝

Gamma(αa +
N

2
, βa +

1
2

N∑
i=1

(Xi − c∆εi)2)

In Step 3.3, for b the target is:

P (b−2|∆ε,∆π,X) ∝
P (b−2)

×
N∏

i=1

(a2 + ∆πib
2)−1/2 exp

(
− (Xi − c∆εi)2

2(a2 + ∆πib2)

)

where P (b−2) is the prior distribution:

P (b−2) ∝ (b−2
)αb−1 exp

(−b−2βb

)
.

and jumping distribution:

Pjump(b−2|∆ε,∆π,X) ∝
N∏

i=1,∆π>0

(b2)−1/2 exp
(
−(Xi − c∆εi)2

2∆πib2

)
P (b−2) ∝

Gamma


αb +

N∑
i=1,∆π>0

1
2
, βa +

1
2

N∑
i=1,∆π>0

(Xi − c∆εi)2

∆πi




In Step 3.4 it is easily verified that c is trun-
cated normal

c|X, c∆ε,∆π, b ∼ N(mcnew , σ2
cnew

),

where σ2
cnew

=
(

1
σ2

c

+
∆ε2

i

a2 + ∆πib2

)−1

and mcnew =

(
mc

σ2
c

+
N∑

i=1

∆εiXi

a2 + ∆πib2

)
σ2

cnew
,

Thus the description of the Gibbs samapler
steps is complete.

V Parameter Estimates for Ex-

perimental Data

We studied the dynamics of CD58 based on a
trajectory consisting of 10,000 frames obtained
at the rate of 1,000 frames per second. The x and
y coordinates of the protein trajectories were ex-
tracted from images using a tracking algorithm.
Below we provide the results of parameter esti-
mation via the method of moments (MOM) de-
veloped in [3] and the credible interval obtained
with the Bayesian method described in this arti-
cle.

For the Bayesian method the choice of the
prior parameter distribution was the following:

a−2 ∼ Gamma(0.1, 10), (5)
b−2 ∼ Gamma(0.04, 20),

c ∼ N(10, 5), c > 0(truncated normal),
µ ∼ Gamma(1, 1).



Notice that with this choice of prior distributions
the probability density functions for a and b are
the following:

Pa(x) =
1
2
x− 3

2 PGammaa−2 (x− 1
2 )

Pb(x) =
1
2
x− 3

2 PGammab−2 (x− 1
2 ),

where PGammaa−2 (.), PGammab−2 (.) are the den-
sities of the Gamma distributions (in our case
Gamma(0.1, 10) and Gamma(0.02, 20) respec-
tively).
Table 1 Parameter Estimates for Two-
dimensional Protein CD58 Trajectory X-
coordinate:

a b c µ

MOM 7.7 22.7 9.67 0.018
Bayesian [6.3; [22.3; [9.6; [0.001;

95% 8.3] 51.1] 10.8] 0.022]
credible
interval

Y-coordinate:

a b c µ

MOM 7.7 37.0 10.3 0.014
Bayesian [6.5; [25.0; [10.2; [0.013;

95% 8.3] 36.5] 11.0] 0.044]
credible
interval
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