
Efficient Agent Communication in Slow Wireless Networks

HEIKKI HELIN, MIKKO LAUKKANEN
Sonera Corporation, Corporate R&D

P.O.Box 970, FIN-00051 Sonera
FINLAND

� �

Abstract: – We discuss agent communication in wireless environment according to FIPA’s communication
model. In wireless environments, the agent communication should be tailored in order to provide an efficient
use of scarce and fluctuating data communication resources. In some cases, efficiency is not so important an
aspect as, for example, reliability. Nevertheless, the communication solutions used in the modern distributed
systems or the agent-based systems seldom fulfil these requirements.

Key-Words: – Agent communication, Wireless environment, FIPA

1 Introduction
In multi-agent systems, communication is an es-
sential component. To exchange their knowledge,
agents should be able to communicate with each
other. In the lower layers of communication, the
agent communication does not necessarily differ
from the communication in traditional distributed
systems. In fact, the same transport protocols and
messaging techniques as in modern distributed sys-
tems should be used. From the lower-layer’s point
of view, agents are just sending data. What makes
the software agent communication different from
the one in the traditional distributed systems is the
use of the agent communication languages (ACLs).
In this paper we are not interested in why agents
want to communicate, but assume that they will
communicate, using some ACL, and that at least
part of the communication path is implemented us-
ing wireless technology.

In wireless environments, the agent communica-
tion should be tailored in order to provide an effi-
cient use of scarce and fluctuating data communi-
cation resources. In some cases, efficiency is not
so important an aspect as, for example, reliability.
Nevertheless, the communication solutions used in
the modern distributed systems or the agent-based
systems seldom fulfil these requirements. In this
paper we analyze the FIPA1 communication mod-
el when employed in the wireless environment. Es-
pecially we concentrate on an efficient ACL com-
munication and analyze the various options for con-

1Foundation for Intelligent Physical Agents;
http://www.fipa.org.

crete encoding of ACL messages that FIPA has
specified.

Figure 1 depicts a layered model of the FIPA
agent communication. In wireless environments,
the agents need to communicate efficiently and the
communication should be reliable. Therefore, the
communication stack given in Figure 1 should be
tailored for the wireless environment. At the con-
versation layer communications patterns should be
optimized so that agent message exchanges are car-
ried out with a minimal number of round-trips. This
is especially important when a high-latency com-
munication path is used. It is important to notice,
that “minimal” here does not mean the absolute
minimal value; sometimes it is better to use more
round-trips to achieve a better end-result. The en-
coding of the content language, the agent commu-
nication language, and the message envelope should
be selected so that the scarce communication path
is utilized as efficiently as possible. This means that
usually a binary encoding should be used instead of
an ASCII-based. The MTP should be able to trans-
fer messages over a wireless link reliably and effi-
ciently. The selection of a message transport proto-
col also typically affects the selection of a transport
protocol. For example, if the transport protocol is
reliable also in wireless environments, the imple-
mentation of the MTP can be much simpler. Typ-
ically, however, this is not the case, and therefore
reliability should be implemented into the MTP.

The rest of this paper is organized as follows.
Section 2 discusses lower-level transport issues con-
centrating on reliability. In Section 3 we analyze



Interaction Protocol Layer

FIPA-Query, FIPA-Request, ...

Content Language Layer

FIPA-SL, KIF, RDF, …

Agent Communication Language Layer

FIPA ACL, KQML, …

Message Envelope Layer

FIPA Message Envelope...

Message Transport Layer

GIOP, WAP, RMI, HTTP, ...

Transport and Signaling Layer

TCP/IP, WAP, SMS, …

Bearer Networks

Fig. 1: A layered model of agent communication

FIPA-ACL messaging and provide results of exten-
sive study on different concrete FIPA-ACL encod-
ings. Finally, Section 4 concludes the paper.

2 Transport and Envelope Layers
The message exchange over a network is needed
when communicating agents are located on differ-
ent hosts in the network. Low-level issues relat-
ed to transferring data over the network is not it-
self an agent-related problem. However, without
efficient and reliable delivery of data, implement-
ing efficient and reliable agent communication—
especially in wireless environments—is impossible.

TCP is perhaps the most widely used transport
protocol, in agent systems as well. In most cases,
TCP is used indirectly. For example, the IIOP and
HTTP protocols used in FIPA use TCP as the trans-
port protocol It is well known that TCP performs
poorly in slow wireless networks [5], and thus gives
a poor basis for MTP employing it. In addition,
there are other problems related to IIOP when used
in the wireless environment (see for example [4]).

FIPA has specified that WAP can be used as a
baseline MTP in the wireless environment. Should
the WAP be used, it is up to the implementation
and the environment, which protocol is used as the
transport protocol. Further, depending on the MTP,
proprietary transport protocols may be possible. For
example, there are several transport protocols for
replacing TCP in the wireless environment. While
these protocols typically provide efficient and reli-
able data transfer, using proprietary protocols may
deteriorate the interoperability.

An important function of the MTP is to provide
reliable message delivery. Neither IIOP nor HTTP
provide sufficient reliability, although at-least-once

message delivery semantics can be implemented
fairly easily. However, this functionality is not spec-
ified by FIPA, and therefore it is not a generic solu-
tion. WAP is the only MTP specified by FIPA that
provides the system with sufficient reliability. How-
ever, it is important to note that OMG is currently
developing an environment specific GIOP mapping
for wireless environments [6]. This protocol pro-
vides reliable delivery of IIOP messages in wireless
environments.

The purpose of the envelope layer is to enable
transport protocol-independent message handling,
for example routing of messages without touching
the ACL. FIPA has defined three concrete message
envelope syntaxes [3]. In the IIOP MTP, the mes-
sage envelope is “built-in” in the MTP, that is, the
IDL interface defines the structure of the message
envelope. The XML-based syntax for the mes-
sage envelope is designed to complement the XML-
based syntax for FIPA-ACL and HTTP MTP. The
third syntax, bit-efficient, is meant for the wireless
environment.

Figure 2 gives the number of bytes of message
envelope transport syntaxes in two cases. The first
case can be considered as a minimal message enve-
lope, that is, it contains only the mandatory fields
of a message envelope. The second one is perhaps
a more typical message envelope. As the XML
syntax is based on ASCII strings, the number of
bytes in the second case is as large as two kilo-
bytes. However, the dominating factor in both cases
is the actual content of the message envelope, that
is, the strings used as agent-identifiers, addresses,
etc. Even the bit-efficient message envelope encod-
ing handles these inefficiently, as it decodes them
as strings. Therefore, if the content of an envelope
is huge, the selection of transport syntax does not
matter. However, we believe that the content of a
typical envelope is fairly small. Here we do not an-
alyze other aspects of concrete message envelope
syntaxes, such as construction or parsing time of a
message envelope. In the next section, we will ana-
lyze the bit-efficient ACL more thoroughly; similar
results of a bit-efficient message envelope can be
expected.

3 ACL Layer
The agent communication language layer defines
the outer language used in communication. Here we



0

200

400

600

800

1000

1200

1400

1600

1800

2000

Case 1 Case 2

IIOP

Bit-Efficient

XML

339

151

585

971

1835

680

Fig. 2: Number of bytes in the message envelope
using standard FIPA encoding schemes

concentrate on one particular ACL: FIPA-ACL. For
FIPA-ACL three standard encoding schemes have
been specified [2]: String-based, XML, and bit-
efficient. Here we compare bit-efficient FIPA-ACL
to other standard encoding schemes as well as to
some non-standard solutions.

In bit-efficient FIPA-ACL there are two primary
ways to reduce the transfer volume over the wire-
less link: tokenized syntax and use of dynamic code
table. First, FIPA-ACL messages are encoded effi-
ciently by using one octet codes for predefined mes-
sage parameters and other common parts of mes-
sages. This is a significant improvement compared
to a simple string-based coding, as it in most cases
reduces additional overhead to half of the original.
By additional overhead we mean the difference be-
tween the encoding size and the size of minimum-
cost encoding. Furthermore, this improvement is
easy to implement and is generally faster to parse
than the string-based coding—comparing bytes is
much faster than comparing strings. Although the
tokenized syntax gives a significant improvement
compared to string-based encodings, the true power
of bit-efficient FIPA-ACL lies in the use of dynam-
ic code table. In this encoding scheme similar parts
of subsequent messages are not transmitted multiple
times over the communication channel, but subse-
quent occurrences are replaced by short codes. In-
telligent caching, however, requires a tight coupling
between communicating peers, and thus is inappli-
cable in some situations. Furthermore, implemen-
tation of intelligent caching requires more memory
and processing power than a simple data reduction
scheme.

For the analysis, we selected four test cases in
which we analyze the size of the output and both

the time it takes to construct a message and the time
it takes to parse a message. In the first case, we use
fipa-request interaction protocol in which the ini-
tiator sends one message (REQUEST) and the par-
ticipant two (AGREE and INFORM). In the second
case, we use fipa-query interaction protocol. In this
case, two messages are sent—one by both the initia-
tor (QUERY-REF) and the participant (INFORM). In
the third case, fipa-subscribe interaction protocol is
used. The initiator sends theSUBSCRIBEmessage
and the participant replies with 10INFORM mes-
sages. The last case is combination of the first three.

Four alternative methods—string-based, XML,
serialized Java object, and compressed string—is
selected to encode FIPA-ACL messages which are
compared against the bit-efficient encoding. The
last two schemes are not standard methods to en-
code messages. However, serialized Java objects
are used, for example, in Jade’s internal communi-
cation when the agents are located on different hosts
but belong to same agent platform (i.e., when Ja-
va RMI is used). Further, as string-based messages
are text information, using text compression is sim-
plest way to encode them efficiently, and therefore
we wanted to analyze it as well.

All the experiments are conducted in the Lin-
ux environment using the Jade agent platform [1]
(JDK1.3), hardware platform being Intel 366Mhz
procecessor and 128 Mb of memory. Our bit-
efficient FIPA-ACL implementation used in the
measurements is a full implementation of FIPA’s
standard. It is a 100% Java implementation, and
can be used both with Jade [1] and FIPA-OS [7].
The platform is selected at in compile time; thus,
there is no additional “multi-platform” overhead at
runtime.

3.1 Analysis

Table 1 shows the results of the output size measure-
ment in bytes. In this case, we use the bit-efficient
FIPA-ACL without a dynamic code table. We will
analyze the effects of using the code table later.
As can be seen, the bit-efficient encoding gives the
smallest output in all cases, as was expected. How-
ever, the difference between compressed string en-
coding and bit-efficient encoding is insignificant.
The XML encoding output size is about twice as
big as the string-based encoding. This also was ex-



Table 1: The output size in bytes
Bit-efficient XML String String (cmpr) ACL object

send recv send recv send recv send recv send recv

Case 1 175 371 638 1294 351 720 204 422 1408 2854
(365%) (348%) (212%) (194%) (117%) (113%) (805%) (769%)

Case 2 161 168 626 630 339 343 203 208 1380 1394
(383%) (375%) (211%) (204%) (126%) (124%) (857%) (830%)

Case 3 167 1800 632 6420 345 3550 211 2165 1392 14144
(378%) (357%) (207%) (197%) (126%) (120%) (834%) (786%)

Case 4 503 2339 1896 8344 1035 4613 618 2795 4172 18384
(377%) (357%) (206%) (197%) (122%) (120%) (829%) (786%)

pected. The serializedACLMessage output size is
notably big. This is due to the fact that the Java seri-
alization outputs the class descriptions to eachOb-
jectOutputStream to which the serialized ob-
jects are written. This could be optimized by using
one stream for several objects. However, this is not
the way how for example Java RMI uses streams.

In the second test, we analyze how long does
it take to construct the output for different encod-
ings2. Table 2 provides the results of these mea-
surements. Each test is repeated 50 times and re-
sults (averages) are given in milliseconds. In these
tests we first create a JadeACLMessage object of
an FIPA-ACL message and then generate the en-
coded output of the message from this object. The
time to create theACLMessage object is not cal-
culated in the final results. The bit-efficient encod-
ing is the fastest in all cases, but the difference to
string-based encoding is insignificant. This was ex-
pected, since creating string-based FIPA-ACL mes-
sage is basically just outputting strings; there is not
much to optimize. Surprising in these results is the
low performance of the zip algorithm. The algo-
rithm we employ in our test is implemented using
native code instead of Java, and therefore it should
be faster. Furthermore, the compression algorithm
gives a slightly larger output than the bit-efficient
encoding scheme. Creating serialized objects is also
surprisingly slow. The reason for this is that creat-
ing a newObjectOutputStream is a very slow
operation.

In the third test, we measure the parsing time of
an encoded message, that is, how long does it take
to create a JadeACLMessage object from an en-

2The XML encoding is left out in these tests, as the current
version of Jade does not support it.

coded stream. In all cases, the data is first read
into memory buffer, so the actual reading time is
not included in the results. Table 2 gives the re-
sults of this test. Again, the bit-efficient encoding
is the fastest, and this time it is much faster than
any other encoding scheme we measured. The main
reasons for this are that (1) very few string compar-
isons are needed to parse the message and that (2)
the bit-efficient FIPA-ACL implementation, instead
of allocating new memory, tries to reuse already al-
located memory whenever possible.

3.2 Effects of Dynamic Code Table

In all the tests analyzed above we used the bit-
efficient FIPA-ACL encoding without the dynamic
code table. Before the tests, we believed that us-
ing the dynamic code table should give better com-
pression ratio, but the code table management might
slow down both constructing output and parsing in-
put as the code table is implemented in Java. How-
ever, as the result will show, the code table manage-
ment slows down neither message constructing time
nor parsing time.

First, we analyze the size of the encoded mes-
sage. As can be seen in Table 3, using code table
provides a more compact output, but only if there
are enough messages to encode. This can be seen
especially in the Case 4, where the coding scheme
without the code table provides 2339 bytes of out-
put in incoming traffic, while using the code table
provides 1063 bytes of output. Using the code table
with a lerger size than�� gives a slightly larger out-
put, because of the two-byte cache indexes. Howev-
er, when encoding a large number of messages, it is
expected that using a larger code table gives a more
compact output.



Table 2: Time to construct and parse the messages (milliseconds)
Bit-efficient String String (cmpr) ACL object

send recv send recv send recv send recv

Message construction
Case 1 3.24 4.42 4.22 6.30 9.40 12.64 107.62 117.92

(130%) (143%) (290%) (286%) (3321%) (2668%)
Case 2 3.16 3.35 4.14 4.30 9.28 9.88 106.76 106.12

(131%) (128%) (294%) (295%) (3379%) (3168%)
Case 3 3.32 11.68 4.32 21.46 9.24 38.30 106.36 149.82

(130%) (184%) (278%) (328%) (3204%) (1283%)
Case 4 5.20 14.56 7.94 26.98 15.68 47.86 115.64 163.24

(152%) (199%) (301%) (329%) (2223%) (1121%)
Message parsing

Case 1 16.14 18.32 24.70 31.08 27.48 40.48 144.88 151.58
(153%) (170%) (170%) (220%) (898%) (827%)

Case 2 16.04 15.60 24.66 24.84 27.74 27.60 143.68 144.38
(154%) (159%) (173%) (177%) (896%) (926%)

Case 3 15.42 41.24 24.88 93.08 27.68 186.76 144.02 211.22
(161%) (226%) (180%) (453%) (934%) (512%)

Case 4 20.86 49.40 36.36 125.98 52.72 262.98 158.52 233.28
(174%) (255%) (252%) (532%) (759%) (472%)

Table 3: Number of bytes using different cache sizes
No cache �

�
�
�

�
��

�
��

send recv send recv send recv send recv send recv

Case 1 175 371 175 249 175 257 175 257 175 257
Case 2 161 168 161 168 161 168 161 168 161 168
Case 3 167 1800 167 792 167 864 167 864 167 864
Case 4 503 2339 354 1063 364 1152 364 1152 364 1152

Next we analyze how long it takes to construct
the encoded output using different cache sizes. Ta-
ble 4 shows the results of this test. A coding scheme
without a code table is the fastest when there is only
one or at most a few messages. This was expected,
since when the code table is used, the encoder tries
to find every string from the code table, which takes
some time. However, when there are several mes-
sages and the encoder actually finds something from
the code table, the process of constructing messages
becomes faster. The reason for this is that when
the encoder should output a string to the encoded
message, it must copy it there, while if the string is
found from the code table, it only has to output the
corresponding index to the encoded message. Sim-
ilar results are also achieved when the parsing time
is measured (see Table 4). The difference is less
significant that in constructing messages. The rea-
son for this is that the code table lookups are much
faster when decoding the message.

As a conclusion, the bit-efficient encoding uti-
lizes the communication path more efficiently than
other encodings. This is especially true when the
encoding is based on ASCII strings. Furthermore,
even if the bit-efficient FIPA-ACL encoding is de-
signed for slow wireless links, it can also be used
when high-speed agent communication is needed,
as the handling (i.e., parsing) of a tokenized syntax
is typically faster than the handling of string-based
syntaxes. For example, parsing bit-efficiently en-
coded messages is more than two times faster than
parsing string encoded messages (see Table 2).

4 Conclusions and Future Work
We presented the layered model of the FIPA agent
communication, and analyzed thoroughly the bit-
efficient encoding of FIPA-ACL messages, and
showed that this encoding is not only more space-
efficient but also more efficient to deal with. Space-



Table 4: Time to create and parse messages using different cache sizes (milliseconds)

No cache �
�

�
�

�
��

�
��

send recv send recv send recv send recv send recv

Message construction
Case 1 3.24 4.42 3.84 4.40 3.80 4.64 3.82 4.36 4.12 5.04
Case 2 3.16 3.35 3.66 3.76 3.68 3.82 3.72 3.68 4.16 4.12
Case 3 3.32 11.68 3.60 9.40 3.88 9.48 3.86 9.58 4.14 9.92
Case 4 5.20 14.56 5.36 11.74 5.48 11.86 5.40 11.86 5.84 12.24

Message parsing
Case 1 16.14 18.32 15.70 18.08 15.66 18.18 15.74 18.16 15.50 18.12
Case 2 16.04 15.60 15.52 15.54 15.78 15.62 15.48 15.54 15.56 15.86
Case 3 15.42 41.24 15.54 36.32 15.62 36.78 15.54 36.60 15.54 35.96
Case 4 20.86 49.40 20.44 43.30 20.56 44.06 20.46 43.88 20.36 43.06

efficiency is an important feature especially in wire-
less environments, but faster handling of messages
becomes important when either processing power
is limited or a great deal of messages should be
handled. Former is true in today’s low-end mo-
bile devices and the latter can be expected in the
future when agent technology is employed on a
large scale. Additionally, we analyzed what is need-
ed from the message transport to support efficient
and reliable agent communication in wireless envi-
ronments. Our implementation of the bit-efficient
FIPA-ACL is available as open source, and at the
time of writing this paper it is being integrated to
both Jade and FIPA-OS agent platforms.

We are currently investigating an efficient encod-
ing for various content languages and models for
efficient agent interaction protocols in wireless en-
vironments. For content languages, we are consid-
ering three options. Firstly, developing a new con-
tent language that is suitable for wireless environ-
ments. This option is unattractive, as it also requires
that “wireless-unaware” agents should support it to
communicate with a “wireless-aware” agent. Sec-
ondly, we are considering syntax-directed compres-
sion for FIPA-SL. Lastly, we are considering using
binary-XML to encode various content languages.
Some of the FIPA’s content languages already have
XML encoding syntax, but for example FIPA-SL
does not. However, there have been discussions for
XML encoding syntax for the FIPA-SL and there-
fore the last option might be the best way to solve
this problem.

The interaction protocol in a wireless environ-
ment can be selected based on the current situation.

For example, having a low-bandwidth connection,
an agent can choose an interaction protocol that re-
quires modest bandwidth, but therefore produces
only sub-optimal results. Alternatively, when more
bandwidth can be used, an agent can choose an
interaction protocol that requires more bandwidth
and thereby produces better results. This selection,
however, involves a careful analysis of the protocol;
how many round-trips are needed and how much
data is needed. Additionally, some of this analysis
must be done at the runtime, as it is impossible in
general to predict the way possible opponents act.

References:
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE — A

FIPA-Compliant Agent Framework. InProc. of the PAAM-
99 Conference, pages 97–108, 1999.

[2] Foundation for Intelligent Physical Agents.FIPA ACL
Message Representations, 2000. Specification numbers
FIPA00069, FIPA00070, FIPA00071.

[3] Foundation for Intelligent Physical Agents.FIPA Agent
Message Transport Envelope Representation Specifica-
tions, 2000. Specification numbers FIPA00073, FI-
PA00085, FIPA00088.

[4] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell,
N. Maumon, E. Veltkamp, B. Wind, and S. Trigila. Us-
ing CORBA to Support Terminal Mobility. InProc. of
TINA’97 Conference, pages 56–67. IEEE Computer Soci-
ety Press, 1998.

[5] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and
N. Vaidya. RFC 2757: Long Thin Networks, Jan. 2000.
(Informational).

[6] Object Management Group. Wireless access and termi-
nal mobility in CORBA. OMG Document dtc/2001-06-02,
June 2001. OMG Final Adopted Specification.

[7] S. Poslad, P. Buckle, and R. Hadingham. FIPA-OS:
The FIPA Agent Platform Available as Open Source. In
J. Bradshaw and G. Arnold, editors,Proc. of the PAAM
2000 Conference, pages 355–368, Apr. 2000.


