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Abstract:- An original algorithm is set forth in connection with a problem that arose with a large arrangement of electric 
devices.  The problem was reduced to one of permutations of a given number of integers into equally sized groupings, in 
such a way that sums within those groupings had to be set as alike as possible. Since the problem was apparently new, 
there was scant literature on the subject. Fortunately enough, an ingenious solution was finally found, and it proved to be 
both easy to understand and easy to convert into almost any programming language. 
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1  Introduction 
The problem dealt with in this paper arose with the need  
to balance  a certain number of electric devices that had to 
be distributed on a 10 × 3 board, which was itself 
connected to a transformer whose capacity depended on 
the potential of the column that registered the highest 
voltage. Since the total electric charge to be put onto the 
board was fixed, the best option seemed to be an attempt 
to distribute the total charge as equally as possible along 
the three columns. Accordingly, this was tantamount to 
distributing a set of given integers into certain subsets or 
groupings of equal size, in such a way that the sums 
within the groupings of numbers were made as even as 
possible. 
 
From the mathematical viewpoint, this is a problem of 
permutations, yet on the face of it the total number of 
permutations to deal with on the board was simply of an 
astronomic size, as it is readily seen that the factorial of 
30 (30!=265252859812191058636308480000000) is well 
nigh impossible to handle. Therefore it became necessary 
to look for a more convenient and orderly method to 
tackle the problem, in a way that each new step should 
improve on the previous one, and by this we mean that 
sums of integers along the corresponding columns were 
set as close to the average as possible. 
 
     After looking over some literature on the subject ([1], 
[2], [3], [4], [5]),  a few general methods suggested by 

different authors were finally discarded, as they all 
seemed to introduce too many unnecessary complications. 
    The algorithm suggested in this paper solves the 
problem by means of spanning a sequence of nested 
intervals which contains all the sums along columns and 
which works  equally well for any number of integers or 
groupings 
 
2  Problem Formulation  
Let us assume that k × n integers are given and that they 
are to be distributed in a matrix of that order, in such a  
way that the greatest sum of elements along columns be as 
small as possible. Moreover, there is no loss of generality 
if we further assume that the number of integers to be 
distributed is a multiple of the number of columns, as if 
that should not happen to be the case, we could simply add 
up zeros till the nearest multiple of n is reached. 
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 Notice that, since all numbers are supposed to be 
integers, we cannot think of a continuous approach to our 
goal. Hence the optimal approach must be found by 
means of suitable permutations of the given integers. On 
the other hand, there is no starting point that might be 
considered at the outset as being “better” or “worse” by 
itself, inasmuch as a single change or a single permutation 
could give rise to a great difference among the sums of 
integers along columns. Therefore our search has to be 
such that a sort of “inverse entropy” is attained, i.e., in a 
way that the process should never pass from a “better” 
distribution to a “worse” one. 
 
Accordingly, the algorithm we come up with is developed 
as follows: In the first place, we start out with an arbitrary 
distribution of the given integers in the matrix. Then we 
introduce the following process of orderly exchanges of 
elements among different columns: 
Let Mj  be the number of the column where the sum of its 
elements has the largest value and let us denote this value 

by 
Mj

S . Likewise,  let mj  be the number of column 
where the sum of its elements is the least, and let us 
denote this sum by 

mj
S . Now let us exchange some 

elements between the columns Mj    y   mj   with a view to 

reducing the size of the interval [
mj

S ,
Mj

S ] where all the 

column sums are found. Since 
mj

S  ≤ P  ≤ 
Mj

S ,  then we 
must see to it that our algorithm may create a sequence of 
nested intervals which contain P.  
   Let us  write  

   PSd jj −=  ,             j  =  1,2,…n,              (1)                                    
 which is the difference between the corresponding sum 
of the j-th column and the average. 
 
Definitión: An exchange of elements between the two 
columns Mj  y mj  is said to be permissible if as a result 

it follows that the value 
mj

S  increases by  ∆ ,  in such a 

way that 
Mmm jjj SSS <∆+< ,  (and at the same time  

MMm jjj SSS <∆−< ).   Thus  
mM jj SS −<∆<0 ,  and,  

taking into account condition (1), we may write 
 
                          

mM jj dd −<∆<0                                (2) 
     
This condition is of utmost importance in the 
development of the algorithm, as it guarantees that the 
sequence of nested intervals in the matrix will yield a 

better distribution of the elements within the matrix in 
comparison with the preceding step 
 
 But now an important question arises, namely: out of all 
permissible exchanges, which particular one will prove to 
be the most suitable to choose? A good variation consists 
in carrying out the exchange corresponding to the 

particular ∆ which is closest   to  
2

* mM jj dd −
=∆  , the 

latter being the amount that brings together the sums of 
elements that lie on the columns Mj    and  mj  .     
    Once an exchange of elements between columns has 
taken place, new values of mj    y   Mj   will be 
determined, so as to look for the possibility of another 
exchange.  In case that no permissible exchange should 
happen to be found between the two columns mj    and   

Mj , then an exchange will be sought between the mj -th 
column and that whose sum has an immediate lower value 
than

Mj
S , and so forth.  If no such possibilities were to be 

found with mj , then the same procedure would be carried 

out with the Mj -th column as well as the remaining ones 
Thereafter, the same procedure will be repeated with the 
column whose sum of elements comes immediately lower 
than 

Mj
S or else with that column whose sum of elements 

is immediately higher than
mj

S . This procedure is 
repeated stepwise until all possibilities have been taken 
into account.  Every time that an exchange of elements is 
performed, the new values of Mj   and  mj   will be set 
into their places, and the procedure will be repeated from 
the beginning. It will only stop when there is no 
possibility for any further permissible exchange.   
 
 
3  Algorithm 
    Starting out from any arbitrary initial distribution, the 
proposed algorithm has the following steps: 
 

1. The elements in each column are arranged in 
decreasing order, i.e: 

          njkiaa ijji ≤≤−≤≤≤+ 1,11,1  

2. The sums jS are calculated, and thus the values 

of mj  and  Mj  are determined. 



3. The quantities *,, ∆
Mm jj dd  are calculated. 

4. A rectangular arrangement { }
kkpqbB =  is set, 

where each ∆=−=
mM qjpjpq aab  represents the 

variation of the sums of elements in the columns Mj  and 

mj , owing to the exchange between 
Mpja  and 

mqja . 

By the same token  *** qpbb =  must be selected in such 

a way that ∆≤≤ *0 b is a  permissible exchange and, 
*** ∆−=∆− pqbmínb . In this way, the best 

possible exchange between the elements in both 
columns mj  and Mj  will be attained, namely the 

exchange of  
mM jqjp aa ** and  

      5. then we proceed to calculate the sums 
2211 qpqp bb +  

for 21212121 ,,,...2,1,,, qqppkqqpp ≠<=  
and choose  

( ) ***
2211

∆−+= qpqp bbmínb .      

    Notice further that each sum of the type  

 
2211 qpqp bb + = =−+− )()(

2211 mMmM jqjpjqjp aaaa                                          

)()(
2121 mmMM jqjqjpjp aaaa +−+=   represents the 

variation of 
Mj

S  and 
mj

S  if pairs of elements are 
simultaneously exchanged, as there might happen that the 

exchanges corresponding to 
2211

and qpqp bb  might 
not be the best one, or event that those exchanges should 
not happen to be permissible. The latter case might 
happen, for instance, if one of them were too big and the 
other one would have a negative sign. Nevertheless the 

simultaneous exchange of 
MM jpjp aa

21
and  for   

mm jqjq aa
21

and  yields a result that is closest to  *∆ . 
    It is interesting to notice that in fact we need not carry 

out all of the sums 
2211 qpqp bb +   as, on account of step 

one on table B, the elements will satisfy the following 
inequality:  

       1+≤ pqpq bb ,    qppq bb 1+≥                              (3)                                                  
so that, starting with p1 = 1,   q1 = 1,2,...,k,    provided that  

11qpb  is fixed, the sum 
2211 qpqp bb +  (with  

2121 , qqpp ≠<  )  becomes greater than  *∆ , the 

next sum to be calculated is 
21211 qpqp bb

+
+ , but if this 

should happen to be less *∆ , then the following one is 

12211 +
+ qpqp bb .  In this way, the advance in table B 

takes place stepwise, and the procedure will stop at the 
time when, having reached the k-th column we must move 
downwards 

    6. Next we compare **and* bb  ,  and thus choose 
the one which is closest to ∆*  , whereupon the best 
exchange is accomplished.. 
 
    7.  Return to step one. 
 
 
4  Example 
Let us illustrate the algorithm by taking k = 6   and   n = 3.  
Consider the initial distribution, and right after the first 
step we have matrix 0A  (see below)   We find : 

P = 6296 , 1S = 6285 , 2S  = 6070 , 3S = 6535 ; 

1S , 2S , 3S  ∈ [6070 , 6535] ; mj   = 2, Mj   =3 ,    
mj

d = 

−226 , 
Mj

d  = 239 ,   ∆* = 232. 

    Next we have to find matrix  B  as follows: 
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
















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






=

21000
300395495
925925990

150012001200
160017001800
200018501800

0A                                      

    
 



























−−−−−
−−−−−

−−−
−−
−−

=

21018571599014901640
3009562590014001550
9255300275775925

15001105575300200350
16001205675400100250
200016051075800300150

B  

 
Here we have 210* 66 == bb ,  6,6* * == qp ,   
which means that the best possible exchange between two 



elements of rows  2  and  3  is 062 =a  by 21063 =a .   

Thus are obtained the new values  3S = 6325,  and   2S  

= 6290, and hence the new interval in which 1S , 2S , 3S  
will be found to be  [6285, 6325]. 
    Let us now look for a possibility to improve on 
exchanges of pairs of elements. Starting with 11b  = 150 
we begin by adding with  22b  = −100 ,  (as we must 
observe 2121 , qqpp ≠< ).   The result is 50, which 
is less than  ∆* = 232.   Next we move to the right and 
add up 11b  with 23b  : 11b + 23b  = 150 + 400 = 550 .   
Since the new value is greater than ∆* ,  we move 
downwards: 150 + 300 = 450 .   It still is greater than  ∆*.     
Next we calculate  150 − 275 = − 125  < ∆*.   Now we 
must move to the right: 150 + 0 = 150 .   This sum is less 
than ∆* ,  so that the next one is  150 + 530 = 680 > ∆*;    
next   150 − 95 = 55 < ∆* ;    150 + 300 = 450 > ∆* ;     
150 + 210 = 360  > ∆*.    The best we have accomplished 

so far is  11b + 66b  = 360 ,  but since this is a worse result 

than 66* bb = =210,  there is no need to recall it. 
 
Next we repeat the same procedure with 12b  = 300: 
300 − 250 = 50 < ∆* ;     300 + 400 = 700 > ∆* ;    300 + 
300 = 600 > ∆* ;    300 − 275 = 25 < ∆* ;  300 + 0 = 300 
> ∆* ;    300 − 625 = −325 < ∆* ;    300 − 95 = 205 < ∆* ;     
300 + 300 =  600 > ∆* ;      300 + 210 = 510 .  This is 
done with all the remaining elements of the first row, 
always trying to improve on the value *b .   
     Now let us move to the second row  Starting with 

21b + 32b  ( recall that  p1 <  p2  ,  q1 ≠ q2).  After going 

over all possible sums with 21b ,  we move to 

22b , 23b , 24b , 25b .   Let us make a stop here: 25b + 31b  > 

∆* ; 25b + 41b  < ∆* ; 25b + 42b  > ∆* ; 25b + 52b  <  ∆* ; 

25b + 53b  > ∆* ; 25b + 63b  = 215 . his value is better than 
*b = 210, as it is closer to  ∆*, therefore we have a better 

exchange than the indicated by 
*b  = 66b . In order to 

terminate the procedure with the element 25b   we have to 
move to the right-hand side, since 215 < ∆* ,    then we 

find  25b  + 64b  > ∆*, which would compel us to move 

downwards,  but, we find ourselves on the last row of B ,  
so that we en up with 25b .  Continuing the procedure on 

table B, we see that 
**b = 25b + 63b  = 215. This means 

that we must exchange the second and sixth elements of 
column Mj   =3  by the fifth and third elements, 
respectively, on column mj   = 2. 
    Once this has been accomplished, we return to step one, 
and after repeating the procedure, the matrix will look as 
follows:  
 



























=

30000
395210495
925925990

120016001200
150017001800
200018501800

1A  

 
Now  1S  = 6285 , 2S  = 6285 , 3S  = 6320 , mj   = 1, Mj   

=3 ,  
mj

d = −11 , 
Mj

d  = 24 ,   ∆* = 17. 
    Notice that there are two equal sums, so that, if we wish 
to render our task more orderly, as it were, we take mj  to 
be the least of the numbers on the columns where the 
value of the sum is the least. Hence we compare the first 
and the third columns. Table B will then look as follows:  
 



























−−−−−
−−−−−

−−−
−−
−−

=

30019569090015001500
39510059580514051405
92543065275875875
12007052100600600
15001005610300300300
200015051010800200200

B  

 

Notice that there is no pqb  in the interval [0,35], hence 
there is no permissible exchange between the elements of 
the first and third columns. However, going along table B 

by reckoning sums of the type 
11qpb +

22qpb  (with  

2121 , qqpp ≠< ),  we do find several permissible 



exchanges, for instance: 6511 bb +  = 5 .   Out of all of 

them, the best one is 6534 bb +  = 210 − 195 = 15 . 

After exchanging  4133 aya   by 5163 aya ,   we 
get: 
 



























=

39500
495210300
9259251200
99016001200

150017001800
200018501800

2A                                                                                                                                             

 
Now   1S = 6300, 2S  = 6285,  3S  = 6305, mj   = 2, Mj   

=3 ,  mj
d = −11 , 

Mj
d  = 9 ,   ∆* = 10. 

In the process of  writing table B we see that there is 

no pqb  within the interval of permissible exchanges, i.e., 
within  (0,20) :  



























−−−−
−−−−

−−−
−−−
−−−

=

395185530120513051655
495285430110512051355
9257150675775925
99078065610710860

15001290575100200350
200017901075400300150

B                                                                          

However, **b = 4532 bb +  =  −710 + 715 = 5 . Next we 

make the indicated exchanges: 4333 and aa   by 

5222 and aa ,   After the first step of the algorithm we 
obtain 
 



























=

21000
395925300
4959251200

15009901200
170016001800
200018501800

3A  

 
                                                                                                                           

Here  1S  = 6300 , 2S = 6290 , 3S  = 6300 , mj   = 2, Mj   

=1 ,  
mj

d = −6 , 
Mj

d  = 4 ,   ∆* = 5 is sufficient to get  

table B   for mj   = 2, Mj   =1 ,   and accordingly there are 
no changes to be made. 
Next the two columns mj   = 2, Mj   =3 are compared.   We 

repeat the same procedure and, after finding B , we 
likewise conclude that there are no possibilities of 
exchanges either. Therefore the procedure has come to an 

end and the best distribution happens to be 3A . 
 
5  General Remarks 
    1. The initial distribution may be thoroughly arbitrary, 
because the algorithm itself always looks, as it were, for 
the  most even distribution. Indeed, it may happen that the 
“worst” distribution could pass into the “best” one in a 
single step, i.e., with a single exchange.  
    2. to be sure, the general method described here could 
give rise to many unnecessary calculations should n 
happen to be too large., as in that case we would have to 
analyze n(n−1) / 2 tables of the B type  Whence it is 
convenient  to set forth the alternative of stopping the 
procedure if ∆ ≤ M,  for certain maximal value of M which 
would account for the greatest permissible difference  
between

mj
S and 

Mj
S , depending, of course, on the 

user’s interests and preferences, or else to halt the 
procedure if the relative error (

Mj
S − 

mj
S )/ P,  becomes 

less than a certain ε >0 previously given. In the above 
example, at the end it is readily seen that the relative error 
is (

Mj
S −

mj
S ) / P ≤  0,0017. 

 
    3. At a cursory glance it may seem that the analysis of 
the B tables could be too cumbersome under certain 
circumstances. In fact, this is not the case, as owing to 
condition (3) the number of sums to carry out may not be 
greater than  
 

k[(k−1)+k+(k+1)+...+(2k−3)] = k(k−1)(3k−4)/ 2 
 
in each table. If in addition we take into account the fact 
that the operations to be performed in the algorithm are 
too elementary, it becomes clear that, all in all, it is a 
rather simple algorithm as compared with other known 
algorithms of linear programming. . 
 



 
6  Conclusions 
    1.  Our own experience has shown great effectiveness 
in the use of this algorithm. In the above example it was 
readily seen that right after the first step the length of 
interval of sums variation jS got reduced from 465 to 

35, reaching finally the value of 10 and only after three 
steps. In particular, we found the algorithm all too useful 
when dealing with boards of electric devices, as stated in 
the introduction.  
 
2. While the original problem that gave rise to the whole 
idea was performed on a  10 × 3 arrangement, the 
algorithm is supposed to be useful for any number of 
rows and columns. Therefore, we consider this effort a 
useful alternative for certain minimax problems in 
integers.  
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