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MEXICO 

 
 

Abstract: In the last years there have been several works dealing with the solution of two particular problems: 
regulation and tracking of chaotic systems. In this paper, a new idea for controlling this kind of systems is 
proposed. Robust control has been used for minimize the effect due to disturbances or parametric uncertainties 
over the dynamic behavior of the controlled system, particularly over its stability characteristics. The idea of 
introducing an Internal Model Controller (IMC) for regulation of a chaotic system is developed here. 
Simulation results are also shown for the Lorenz system 
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1   Introduction 
Recently, chaos control has been explored from 
several disciplines, these efforts may be classified in 
order to describe the nature of these methods 
according with [2] in: parametric perturbation 
methods, automatic control methods, entrainment 
and migration controls, external force controls and 
some others using intelligent computation 
techniques. 
The technique used here may be classified into the 
class of automatic control techniques. This method 
is used mainly in order to reduce the effect of 
disturbances or parametric uncertainties, the so-
called Internal Model Control [5] has shown to be 
effective solving this problem and consists basically 
in the inclusion of a plant model in which it is not 
strictly needed the exact knowledge of the 
parameters values, this is the internal model. A 
linear filter for the plant-model error and a control 
law stabilizing some global system are added. 
The paper is organized as follows, in the next 
section the Internal Model Controller technique is 
introduced, section 3 deals with the implementation 
of the IMC for the Lorenz system, some results are 
shown section 4 and finally concluding remarks are 
given. 
 
 
2   Internal Model Control 
A design of a controller for nonlinear systems in 
chaotic regime is presented. This controller has an 
structure called internal model controller, which 
provides fine characteristics of performance and 
stability for systems under disturbances or when the 

values of the plant parameters are not well known, 
i.e. just the input-output plant response is known. 
The IMC scheme has shown to be very effective 
under these conditions [5], and it was first developed 
for linear systems. The approach used here gives 
conditions for applying the IMC technique for 
continuous nonlinear systems, which are used in this 
paper in order to apply the method for the well-
known Lorenz system. 
Systems treated here are SISO and completely 
linearizable via coordinate transformation and state 
feedback. The performance of the plant converges to 
a constant reference under the presence of parameter 
uncertainties, such that the closed loop system has 
an asymptotically stable equilibrium point. This kind 
of systems do not need an explicit design of a 
nonlinear observer, instead states of the internal 
model are used. 
Consider a system dynamics represented by: 
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where z(t)∈Z is the state, Z ⊂ ℜn and contains the 
origin; u(t)∈ℜ is the control input; f and g are 
smooth vector fields defined on Z, and h:Z→ℜ is a 
smooth function. It is assumed that the origin is an 
equilibrium point of the autonomous system. 
Let us define the Lie Derivative of a scalar function 
h along the vector field f as: 
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Let us assume that (1) has strong relative degree n, 
i.e., 
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for j = 0,1,...,n-2 and  
( ) 01 ≠− zhLL n

fg     (4) 

If condition (3) is satisfied, then the map 

( ) )(,...,,)( 1 zhLhLhzTx n
ff

P −==  is a coordinate 

transformation [4]. System (1) may be given by its 
so-called normal form using the state xP. 
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where xP ∈ XP=T(Z), ( ) ( )( )Pn
f

PP xThLxf 1−=  and 
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Thus, nonlinear plants described by (5) are 
considered here. Now let us assume that an 
approximate model of (5) is available 
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where ( ) MPnMM
n

MM XXXxxx ⊂ℜ⊂∈= ,,...,1 ,  fM 

and gM are smooth functions. Also let us assume 
that (6) has strong relative degree equal to n; i. e. 
gM(xM) ≠ 0 for all xM∈XM and fM(0)=0. 
Let ePM be the plant-model output error: 

ePM = yP - yM    (7) 
and consider a linear system in order to filter this 
error: 
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where ( ) ( ) nF
n

FFnF
n

FF aaaxxx ℜ∈=ℜ∈= ,..., and ,..., 11  is 
such that FnF

n
n aa 1

1 ...++λ+λ −  is strictly Hurwitz. 

A schematic diagram of this control structure is 
shown in figure 1. It is assumed that the only 
available plant signal is its output yP. The control 
goal is that the output of the plant follows a smooth 
signal y* which exponentially converges to a 
constant *y . 

 
Fig. 1. Internal Model Controller 
 
A control law that linearizes the global input output 
relationship is proposed now. Let us define the 
following auxiliary variables: 
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for i = 0,...,n-1, and a global output yg ≡ y1. Thus, the 
following control law is proposed [1]: 
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where y = (y1,...,yn) and a = (a1,...,an) is a real vector 
such that 

1
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n
n ++λ+λ −  is strictly Hurwitz as 

well. This control law linearizes the dynamics of the 
global output yg in such a way that: 
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3   Implementation of IMC for the 
Lorenz System 
 
Let us consider a forced Lorenz system [3] whose 
dynamics are described by: 
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The chaotic regime is given when σ=10, β=8/3 and 
ρ=28 and a projection of the attractor in the x1-x3 
plane is shown in figure 2. The normal form, which 
stands for the model, is given by: 
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and  
( ) MMM xxg 1σ−=                (15) 

A projection of the model attractor in the z1- z2 plane 
is shown in figure 3. In order to observe the 
performance of the controller under parametric 
uncertainties, the parameter ρ for the model is fixed 
to ρ=25, which also leads to a chaotic regime in the 
model. The filter is proposed as a linear system as in 
(8) with aF = (0.125, 0.75, 1.5). The control law in 
(10) is applied using vector a = (1000,300,30). 

 
Fig. 2. Projection in the x1- x3 plane of the plant 
attractor 
 
Finally, simulation results for the closed loop 
system, are shown in figure 4. The reference used 
here was to y*=-5. 

 
Fig. 3. Projection of the model attractor in the z1- z2 
plane 

 
Fig. 4. Plant output converges yP to y*=-5 

 
4   Concluding Remarks 
An Internal Model Controller structure has been 
used for a class of nonlinear systems in chaotic 
regime. A chaotic system must be completely 
linearizable via coordinate transformation and state 
feedback, in order to allow an IMC implementation. 
A couple of important features of this scheme are 
that it does not need an explicit design of a nonlinear 
observer and that a difference between plant and 
model is tolerated. 
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