
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1  Introduction 
In this paper we consider a polynomial 
system 
•

x = f(x),                                                     (1) 
x = (x1, ..., xn)T ∈ Rn, with n ≥ 2. We address 
to the following problem. Can a system (1) 
be mapped into a general quadratic system 

 
•

X  =q (X) + CX + D                                 (2) 
defined in a linear vector space RN for some 
dimension N; here q is a homogeneous 
quadratic vector field (q (λX) = λ2q(X) for all 
λ∈ R and all X ∈ RN); C is a (N ·N) real 
matrix; D ∈ RN? 
The reason of the interest to this question is 
related to the idea to consider a general 
quadratic system as a system lifted in a 
suitable algebra. This approach is fruitful for 
studies of different topics of qualitative 
theory of ordinary differential equations: 
periodic orbits, domains of attractions etc. 
See detailed discussions on this subject in the 
paper of Kinyon and Sagle, [5], and in the 
book of Walcher [9]. 
It is shown in [5], Proposition 2.1, that if 

z(n)=p(z,
•

z ,...,z(n-1))                                      (3) 
is a n- order differential equation, with p be a 
polynomial of its arguments, then the 
solution to this    equation   may  be  obtained     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from some solution of a quadratic system 
•

Z  
= Z2 presenting in a suitable algebra. Here the 
main idea of the proof consists in 
constructing of a monomial mapping which 
maps (3) into a general quadratic system (2) 
living in some linear vector space RN . We 
prove that the answer for our question is 
always affirmative if we allow that this 
mapping is rational and is well defined 
outside some algebraic set strictly contained 
in the state space nR . The structure of this 
paper is as follows. Section 2 contains the 
formulation of two classical theorems on 
algebraically dependent polynomials which 
are used in the proof. The main result of this 
paper (Theorem 3) is presented in Section 3. 
One special case is also studied there. We 
give one remark concerning an application of 
Theorem 3 to the case of Noetherian systems 
in Section 4. 
 
 
2   Some algebraic preliminaries 
Let R[X]= R[x1,...,xn] and   R[W]= 
R[w1,...,wn+1] be two rings of polynomials. 
We remind two classical results about 
algebraically dependent polynomials used in 
this paper. 
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Theorem 1. (Perron, [6]; see the modern 
version in [7]). Let 
F1(x1,...,xn),...,Fn(x1,...,xn),Fn+1(x1,...,xn)∈ 
R[X] be polynomials of positive degrees of 
variables (x1,...,xn ) Let v be the weight of the 
ring R[W] defined by conditions v(wi) = deg  
Fi  for i =1, ..., n + 1.  Then there is a 
nontrivial polynomial T ∈ R[W], W = (w1, 
...,wn+1) such that 
T(F1(x1, ..., xn), ..., Fn+1(x1, ..., xn)) ≡ 0, 
 

with v(T) ≤  Π
+

=

1

1

n

i
deg Fi. 

Theorem 2. (Gordan, [2], see the modern 
version in [3]). If two polynomials P(x1, ..., 
xn) and Q(x1, ..., xn) (being nonconstant 
polynomials) are algebraically dependent 
then one can find a polynomial W(x1, ..., xn) 
and two polynomials of one variable p(t), q(t) 
such that P(x1, ..., xn) = p(W(x1, ...,xn)) and 
Q(x1, ..., xn) =q(W(x1, ..., xn)). 
 
 
3   Main results 
By ϕ(x, t) we denote a solution of the system 
(1) such that ϕ(x, 0) = x. Let Lf be a Lie 
derivative along the vector field f and 
L i

f ψ=L f (L 1−i
f ψ), i ≥1,L 0

f ψ=ψ  for any ψ ∈ 
R[X]. 
The main result of this paper is contained in 
Theorem 3. One can find an algebraic set Α 
defined as Α=a-1(0) for some real nonzero 
polynomial a(x1,…,xn) or A=φ, and a system 
(2) defined on a linear vector space RN for 
some integer N such that there is a rational 
mapping Ψ : Rn → RN with following 
properties: i) Ψ is well-defined on Rn -Α, ii) 
if x ∉Α  then Ψ (ϕ(x, t)) = Φ(Ψ(x, t)). Here 
by Φ(X, t) we denote a solution of (2) with 
an initial condition Φ(X, 0) = X. 
 
Proof. We take any polynomial ψ∈ R[X] 
such that L n

f  ψ is nonconstant. Let z = ψ(x). 

According with Theorem 1 there is a 
polynomial 
G ∈ R[w1, ...,wn+1]  such that 
G(ψ(x), Lf ψ(x), ..., L n

f  ψ(x)) ≡ 0. 
Without loss of genericity we consider that 
the polynomial G with this property has a 
minimal possible degree with respect to 
variables (w1, ...,wn+1). 
Now by borrowing one idea from the lemma 
in [8] we can express G as a sum of 
polynomials G1 +G2, where G1 contains all 
monomials of G depending on wn+1 and does 
not contain any monomial of G which is not 
depended on wn+1;G2 = G-G1. Now if 
G1(x) =∑

γ

aγ(ψ(x)) 0γ …(L n
f ψ(x)) nγ  

then 
LfG1(x) = L 1+n

f  ψ(x) · Q(ψ(x), Lf ψ(x), ...,L n
f  

ψ(x)) +B(ψ(x), Lf ψ(x), ..., L n
f  ψ(x)) 

for some polynomials B,Q, with 
 
v(Q) < v(G1) ≤ v(G).                                  (4) 
 
It follows from similar computations for LfG2 

that L 1+n
f  ψ(x) · Q(ψ(x), Lf ψ(x), ..., L n

f  ψ(x))                         

+P(ψ(x), Lf ψ(x), ...,L n
f  ψ(x)) ≡ 0              (5) 

for some polynomial P. Therefore the 
expression 
Q( ψ(x), Lf ψ(x), ...,L n

f  ψ(x)) is not 
identically equal to zero because of (4). We 
denote its set of zeroes in Rn by Α. It follows 
from (5) that by use of the mapping Ψ: Rn → 
Rn+1, Ψ(x) =(ψ(x), Lf ψ(x), ..., L n

f  ψ(x))T , 
we map the system (1) into the system 

z(n+1)=-P(z, 
•

z , ..., z(n))/Q(z, 
•

z , ..., z(n)) 
defined outside of the set Q-1(0). Now by use 

ω = Q-1(z, 
•

z , ..., z(n)) we compute          
•

ω = 
•

Q /Q2 =-ω2Q1-ω3PQ2 for some polynomials 

Q1;Q2 depending on z, 
•

z , ..., z(n). 
 
 



    As a result, we get a new system 

         z(n+1) =-ωP(z,
•

z , ..., z(n)),                    (6) 

         
•

ω = -ω2Q1(z,
•

z , ..., z(n)) 

               -ω3P(z, 
•

z , ..., z(n))Q2(z,
•

z , ..., z(n)) 
and let F be a vector field of (6) written as a 
system of the first order in (ω,Z)- 
coordinates, with Z= (z1, ..., zn+1)T  and z1 = 
z. Let LF be corresponding Lie derivative. 
Further, for any polynomial 
  h(x1, ..., xn) =

a
∑ h a x a , x a = x 1

1
a … x na

n ,    (7) 

we introduce the set 
 supp h = {α | hα ≠ 0 in the formula (7)}. 
We define following sets of multiindices: Ω0 
= suppP; Ω1 = suppQ1; Ω2 = suppPQ2. By es, 
s = 1, ..., n + 1, we denote the standard 
orthonormal basis in Rn+1. Let Ω  = Ω0 ∪ Ω1 
∪ Ω2∪(∪ 1

1
+
=

n
s  es). By U(Ω2) we denote the set 

of monomials with degrees from the set Ω2. 
Then we define a monomial mapping by 
formulae 
usα = ωs Zα; α ∈Ω , s = 0, 1, 2;                   (8) 
u10 =ω; here the index 0 ∈ Rn+1. 
By U(Ω) we denote the set of monomials 

given in (8). Also, we introduce |α |= ∑
+

=

1

1

n

j

 αj. 

Now our goal is to enlarge the set  Ω up to 
some set Ω* for which the corresponding set 
U(Ω*) of monomials forms the mapping Ψ := 
Ψ (Ω*) such that Ψ maps (1) into some 
system (2).  
Firstly, we take 
LFω = -ω(ωQ1) - ω (ω2PQ2). 
 
Since both Q1  and PQ2 belong to the linear 
span of monomials from U(Ω2) the last 
formula gives a quadratic differential 
equation expressed with help of monomials 
of U(Ω). 
Further, we examine two cases: LF Zα, α∈Ω , 
contains 1) a monomial Zβ , and 2) a 
monomial      Zβ ω. In the first case | β |=|α |  

up to a nonzero coefficient . In the second 
case β = α-en+1+γ, with αn+1 ≥ 1, for some 
γ∈Ω0. Now if Zβ (Zβ ω correspondingly) is 
not contained in U(Ω) then we add it into 
U(Ω). After this in accordance with these two 
cases we take LFZβ and LFZβ-γ ,with     |β-γ |= 
|α |-1 and we repeat our arguments. Since the 
number of monomials Zδ , with | δ |≤|α | is 
finite, we add on this way only a finite 
number of monomials into U(Ω). Now we 
repeat this argument for each multiindex 
α∈Ω . As a result, we obtain some completed 
set of monomials defined below by U(Ω*) for 
some set Ω*  of multiindices, with  Ω* ⊃Ω . 
At last, we take any ωs Zα chosen from the 
set U(Ω*), s = 1, 2. We can write 
 LF (ωs Zα) =- s(ωQ1) · (ωs Zα) -                 (9) 
           s(ωs Zα) · (ω2PQ2) + (ωs LF Zα); 
           s = 1, 2. 
Here in notations introduced above we have 
the following. Let s = 1. Then the expression 
in the last parenthesis in (9) can contain only 
monomials of types ωZβ and (ωZ 1+− neα )·          
( ωZγ), with ωZβ ; ωZ 1+− neα ; ωZγ contained in 
U(Ω*). Now let s = 2. Then the expression in 
the last parenthesis in (9) can contain only 
monomials of types ω2Zβ and (ωZ 1+− neα )·       
(ω2Zγ), with ω2Zβ ; ωZ 1+− neα ; ω2Zγ contained 
in U(Ω*). By examining other expressions in 
parenthesis in the right- side of (9), we can 
see that each of them is contained in the 
linear span of monomials from U(Ω*). 
Therefore (9) gives quadratic differential 
equations expressed with help of monomials 
of U(Ω*). 
Finally, we note that, by construction, N = 
card(U(Ω*)). Also, if a is the maximal degree 
of monomials entering into the vector-
polynomial F then  
N ≤ 1 + 3∑ =

+a

s
sn

s0
)( . 

Hence, the desirable assertion is proved. 
The bound for N contained in this theorem 
looks high in comparison with the dimension  



n. But sometimes the real value for N can be 
less than n for a clever choice of a 
polynomial Ψ. 
Example 1. Consider a system  
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and a function Ψ = 2

3
2
2

2
1 xxx ++ . Then by 

computation of Lf Ψ we establish that this 
system is mapped into the one-dimensional 

system ).1(2 zzz −=
•

 Now we examine one 
special situation on this matter. 
Proposition 4. Suppose that we can find a 
polynomial g with following properties: 1) if 
g(x) = p(W(x)) is some representation of g as 
a composition of two polynomial mappings 
W : Rn → R1, p :R1 → R1, then it follows 
that p is linear; 2) polynomials {g, ..., L 1−i

f g} 
are algebraically independent in R[X] while 
g and L i

f g are algebraically dependent in 
R[X], i ≤ n. Then there exist a polynomial 
mapping Ψ: Rn → Ri and an i-dimensional 
polynomial system 

  )(,,..., 1121 zFzzzzz iii ===
•

−

••

               (11) 
 
such that Ψ(ϕ(x, t)) = Φ(Ψ(x), t) on Rn, with 
Φ be a solution of (11), Φ(z, 0) = z ∈ Ri. 
Proof. It follows from Theorem 2 applied to 
polynomials g and L i

f g and the first 
condition that one can find polynomials g : 
Rn → R1 and W : Rn → R1, such that L i

f g = 
F(g) for some polynomial F. This fact implies 
the result of Proposition 4, with Ψ:x → (g(x), 
L f g(x), ..., L 1−i

f g(x)).  
Consider the case: n=2. We introduce a 
mapping Ξ : x→ (g(x), L f g(x)). Then, as it 
directly follows from [4], Proposition 2, g 
and L f g are algebraically dependent in R[X] 

if and only if the jacobian of Ξ is identically 
equal to zero. 
Remark 1.  Suppose that conditions of 
Proposition 4 are held. In this case 
localization problems for attraction domains 
and for limit sets of the system (1) are solved 
in terms of preimages of equilibria of the 
system (11) respecting to the mapping g.  
For example, let us take the system (10). We 
have: Ψ-1(0) = 0 which is an  equilibrium of  
the system (10), Ψ-1(1)=  {x 2

1 +x 2
3

2
2 x+ =1} 

which is an invariant two- dimensional 
sphere being an attractor of the system (10). 
Corollary 5. Assume that (1) is a general 
cubic system, n=2 and we can find a 
quadratic form g satisfying conditions of 
Proposition 4. Then, by application of 
Proposition 4, the system (11) is a general 
quadratic system.  
 
4   Remark on Noetherian systems 
Firstly, we note that all results remain valid 
for (1) defined in the complex state space Cn 
because Theorem 1;2 are true for complex 
polynomials. Also, we remind, see e.g. [1], 
that a ring K of analytic functions defined on 
an open domain U⊂Cn is called a ring of 
Noetherian functions in U if 1) K contains 
the polynomial ring C[X] of polynomials of n 
variables and is finitely generated over this 
ring; 2) K is closed under differentiation. A 
set of functions χ = {χ1, ..., χm} is called a 
Noetherian chain of order m if these 
functions generate K over C[X]. We shall 
call a system of a type (1) Noetherian if each 
component fs is expressed as ρs(x, χ(x)) for 
some polynomial ρs, s = 1, ..., n. We define 
the mapping U → Cn ×Cn by the formula x 
→ (x, χ (x)). Then it is clear that the  
Noetherian system is mapped by this 
mapping into some polynomial system of 
dimension n + m. Therefore, by Theorem 3, it 
is also mapped into some general quadratic 
system. For example, consider a Li´enard 

equation  1

•

x  =x2 -α sin x1; 2

•

x  = -x1. Since 

(10)



{sin x1; cos x1} forms a Noetherian chain 
then by use the mapping z1 = x1; z2 = x2; z3 = 
sinx1; z4 = cosx1 we map a Li´enard equation 

into 1
•

z = z2-αz3; 2
•

z  =- z1; 3
•

z  =z2z4-αz3z4; 

4
•

z = -z2 z3 + αz 2
3 . 
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