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Abstract: - In cardiac catheterization labs, x-ray angiography is used to visualize abnormal narrowings of the
coronary arteries, i.e., stenoses. An often used technique to treat stenoses is stent implantation. This technique can
only be performed successfully if the length of the stenotic lesion and the radius of the non-stenotic part of the
narrowed vessel segment are known precisely. In clinical practice, the determination of these quantities is done
directly based on angiographic images of the coronary arteries or based on a three dimensional reconstruction of the
coronary arteries build up using (two) angiographic images. In this paper, a method is presented to build up a three
dimensional reconstruction of the centerline of the coronary arteries using more than two angiographic images.
This is a preparatory step to build a complete reconstruction of the arteries based on more than two images. The
presented method is based on discrete dynamic curves. The validation is done using computer-generated phantom
images.

Key-Words: - Image Processing, X-ray Angiography, Coronary Arteries, Discrete Dynamic Curves, 3-D
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1 Introduction
In cardiac catheterization labs, coronary arteries are
visualized by means of angiographic images, i.e.,
x-ray images of the heart region, recorded from dif-
ferent viewing directions after the injection of an
x-ray absorbing contrast agent into the coronary ar-
teries (See Figure 1).

Abnormal narrowings of the coronary arteries,
i.e., stenoses, can be treated in a minimally invasive
way by stent implantation. Doing this, the length
of the stenotic lesion and the radius of the non-
stenotic part of the narrowed vessel segment has to
be known precisely. After all, using a stent that is
too short or too small is not effective, and using a
stent that is too long or too big may unnecessary
damage the arteries.

Determination of quantitative parameters of a
stenotic lesion directly based on angiographic im-
ages may be influenced by the viewing direction
from which the arteries are visualized [1]. To deal
with this viewpoint dependency, multiple computer
systems have been developed that combine the in-

formation of two angiographic images and build up
a three dimensional reconstruction of the coronary
arteries [2]-[9]. Some systems combine the infor-
mation of more than two images [10], but as far as
known, these systems are not ready to be used in
clinical practice yet.

In this paper, a method is presented to build up
a three dimensional reconstruction of the centerline
of the coronary arteries based on more than two an-
giographic images using discrete dynamic curves.
A three dimensional centerline reconstruction is a
first step towards a three dimensional reconstruction
of the complete vessel structures [5].

The presented method is an extension of the work
of Cãnero et al. described in [11]. They use two
images to reconstruct the centerline of a vessel by
means of deformable curves.

Using more than two images minimizes the
chance that multiple centerline configurations can
be reconstructed based on the same images (de-
scribed in [11]). Furthermore, it results theoreti-
cally in a better three dimensional reconstruction of



Figure 1: Angiographic image of the coronary ar-
teries. Notice the stenosis indicated by the arrow.

the complete vessel structures.
Starting from the terminology used in [11], i.e.,

biplane snakesfor deformable curves constructed
using biplane images, we will usemultiplane dy-
namic curvesto indicate dynamic curves con-
structed using more than two images.

The remaining of this paper is organized as fol-
lows: the reconstruction method is presented in
Section 2, some results are given in Section 3, and
a conclusion if formulated in Section 4.

2 Method
2.1 Single point reconstruction using two

images
Theoretically, the three dimensional reconstruction
of a single pointP is the intersection of the pro-
jective linesS1P1 andS2P2 connecting the projec-
tionsP1 andP2 of the pointP with their correspond-
ing x-ray sourcesS1 andS2, respectively (See Fig-
ure 2) [11, 12].

However, in practice, the projective lines fail to
intersect due to the limited accuracy of the projec-
tion geometry, geometric image distortions and in-
dication errors. Dumay et al. proposed to use the
point P′ with the minimal square distance to both
projective lines as reconstructed point (See Fig-
ure 3) [12]. Today, this approximation is frequently
used.
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Figure 2: Schematic representation of the recon-
struction of a single point using two images (under
ideal circumstances).

2.2 Single point reconstruction using more
than two images

A schematic representation of the reconstruction of
a single point using three images is shown in Fig-
ure 4.

Again, the projective linesS1P1, S2P2 andS3P3
fail to intersect in one particular point. As recon-
structed point one can use:

• The point with the minimal square distance to
all projective lines.

or

• The center of mass of the points with minimal
square distance to each set of two projective
lines.

Because the center of massP′′ of the points with
minimal square distance to each set of two projec-
tive lines (P′a, P′b andP′c in Figure 4) can easily be
computed, we use this point as reconstructed point.

2.3 Discrete curve reconstruction using
more than two images

Let us considerN images, a discrete target curveTv
(defined by the verticest1, t2, . . . ), and a discrete
dynamic curveQu (defined by the verticesq1, q2,
. . . ) used to reconstructTv. Let (tv)i and(qu)i be
the projections oftv and qu in the image planei,
respectively, withi = 1. . .N (See Figure 5).
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Figure 3: Schematic representation of the recon-
struction of a single point using two images (under
real circumstances).

The curveQu we are looking for minimizes the
error:

ε(Qu) =
N

∑
i=1

∑
j

min
v

(‖(q j)i− (tv)i‖) (1)

The initial discrete dynamic curveQu is obtained
by connecting at least two initial vertices of which
the projections are indicated in the images. The re-
construction of the initial vertices is done by means
of the method described in Section 2.2. Using more
than two initial vertices speeds up the curve recon-
struction and is in some cases even required to find
an acceptable solution.

The modification ofQu is done by means of re-
peatedly resampling and deforming the dynamic
curveQu.

2.3.1 Resampling
The method used to resample the discrete curveQu
is a three dimensional extension of the work of Lo-
bregt et al., presented in [13]. The desired distance
between two vertices of the discrete dynamic curve
is given by the parameterLdes. This parameter is
responsible for the resolution of the curve. A big
value results in a smooth curve, a smaller value al-
lows more detail. FromLdes, two other parameters
Lmin and Lmax are derived, representing the mini-
mum and maximum distance which is allowed be-
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Figure 4: Schematic representation of the recon-
struction of a single point using three images (under
real circumstances).

tween neighboring vertices. When, during the mod-
ifications of the curve, the distance between two
vertices becomes shorter thanLmin, the two vertices
are replaced by a single vertex exactly in between
the two replaced vertices. When a segment becomes
longer thanLmax, an additional vertex is inserted ex-
actly in between the two vertices. To avoid oscilla-
tions,Lmax has to be more than two timesLmin. We
use: {

Lmin = 1
2Ldes

Lmax= 3
2Ldes

(2)

2.3.2 Deforming
The curveQu deforms to minimize its energy:

Etotal(Qu) = Eint(Qu)+Eext(Qu). (3)

Minimizing the internal energyEint means pre-
serving the smoothness of the curve and the equal
distance between the vertices. The internal energy
of a vertexqu is:

Eint(Qu) = ∑
u

(Eint(qu))

∼ ∑
u

(‖−−−−→ququ+1−−−−−→qu−1qu‖) , (4)

with qu−1 andqu+1 the vertices just before and just
after qu, respectively. The internal force used to
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Figure 5: Schematic representation of the recon-
struction of a discrete curve using more than two
images.

minimize the internal energy of vertexqu is:

−−−−→
Fint(qu) =

−−−−→ququ+1−−−−−→qu−1qu

ci
, (5)

with ci ≥ 2 to avoid oscillations.
Minimizing the external energyEext means de-

forming the curve so that its projections coincide
with the vessels. The external energy of a vertexqu
is:

Eext(Qu) = ∑
u

(Eext(qu))

∼ ∑
u

(
N

∑
i=1

PV((qu)i , i)

)
, (6)

wherePV(x, i) stands for the pixel value of the pixel
x in the energy imagei. The determination of an
energy image corresponding to an angiographic im-
age is beyond the scope of this paper. In the easiest
case, the energy image equals the original image.
After all, the vessels are represented by dark pix-
els (low pixel values→ low energy), and the back-
ground consists of lighter pixels (higher pixel val-
ues→ higher energy) (See Figure 1 and 6).

The external force corresponding to vertexqu and
image planei is:

−−−−−−−→
Fext,i ((qu)i) = Fext,i ((qu)i)

−→
bu,i , (7)

Figure 6: (left) Phantom image. (right) Surface plot
of the left image representing the energy valley cor-
responding to the image.

with

Fext,i ((qu)i) =−ce
−−−−−−−−→
∇PV((qu)i , i) ·−→bu,i , (8)

and

−→
bu,i =

[
0 1
−1 0

] −−−−−−−−−→
(qu−1)i(qu+1)i

‖−−−−−−−−−→(qu−1)i(qu+1)i‖
, (9)

the unity vector ofqu in radial direction in imagei
(See Figure 7).
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Figure 7: Schematic representation of the unity vec-
tor bu,i of qu in radial direction in imagei.

The external force used to minimize the external
energy of vertexqu, i.e.

−−−−→
Fext(qu), is a function of the

external forces corresponding to the image planes:

−−−−→
Fext(qu) = f

(−−−−−−−−→
Fext,1((qu)1),

−−−−−−−−→
Fext,2((qu)2), . . . ,

−−−−−−−−→
Fext,N ((qu)N)

)
(10)

The choice of the functionf is important. Using
three orthogonally recorded images,

−−−−→
Fext(qu) =

1
2

3

∑
i=1

−−−−−−−→
Fext,i ((qu)i) (11)



Figure 8: Four computer-generated phantom im-
ages with the indicated corresponding points (white
markers), and the projections of the initial discrete
dynamic curve (white lines).

can be used, but in general a linear combination is
not suitable. We use:

−−−−→
Fext(qu) = ρ

(
(qu)1 +

−−−−−−−−→
Fext,1((qu)1),

(qu)2 +
−−−−−−−−→
Fext,2((qu)2), . . . ,

(qu)N +
−−−−−−−−→
Fext,N ((qu)N)

)
−qu,

(12)

with ρ the reconstruction operator described in
Section 2.2.

To conclude, deformingQu means replacing ver-
ticesqold

u by:

qnew
u = qold

u +ci f
−−−−−→
Fint(qold

u )+ce f
−−−−−→
Fext(qold

u ). (13)

By repeatedly resampling and deformingQu, the
total energyEtotal(Qu) and the errorε(Qu) mini-
mize, or the discrete dynamic curveQu converges
to the target curveTv.

3 Results
The presented method is validated using computer-
generated phantom images (See Figure 8). The ini-

tial discrete dynamic curve is obtained by indicating
corresponding points in the images.

After 15 iterations, this means after 15 times re-
sampling and deforming, a curve is obtained as pre-
sented in Figure 9 and Figure 10.

Figure 9: Four computer-generated phantom im-
ages with the projections of the discrete dynamic
curve after 15 iterations.

Figure 10: Three dimensional representation of the
reconstructed centerline.



4 Conclusion
A method is presented to reconstruct the centerline
of coronary arteries based on multiple (more than
two) angiographic images using discrete dynamic
curves. Using multiple images has the advantage
that ambiguities about the centerline configuration
become less likely. Extending the reconstructed
centerline structure to a three dimensional recon-
struction of the complete vessel structures will be
the next step. Doing this using multiple images will
theoretically result in a better reconstruction than
using only two images.
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