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Abstract: - In this study, we present a numerical scheme to solve the drift-diffusion traffic flow model under the 
steady state. The drift-diffusion traffic flow model consists of a continuity equation and a nonlinear Poisson 
equation. The continuity equation describes the propagation of density along the road, and the Poisson equation 
describes the interaction among vehicles. The system equations cannot be solved analytically. Therefore, a 
numerical iterative scheme, which is a finite difference approximation of the model, is presented. A numerical 
example is employed to explain the model and to show the advantage of the scheme. 
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1   Introduction 
Traffic congestion generates the interest in traffic 
flow researches. Traffic flow theory is a new science, 
which has addressed questions related to 
understanding traffic processes and to optimizing 
these processes through proper design and control. 
There are four main methodologies: car-following 
models, kinetic models, Boltzmann-like models and 
cellular automation (CA). Zhang and Owen [1] 
compared the advantages of macroscopic and 
microscopic simulators and mentioned that if the 
purpose of the research focuses on real-time 
prediction, macroscopic models is preferred.  

Lighthill, Whitham [2] and Richards [3] firstly 
proposed a macroscopic dynamic traffic flow model 
(LWR model), which is a continuity equation. The 
related subjects are broadly researched and debated. 
The assumption of LWR model is that velocity 
changes instantaneously as density changes. It is 
certainly not valid in some traffic flow situations. To 
overcome the steady state assumption of velocity, 
Payne [4] used a motion equation to obtain time 
variant speed and proposed a second order model, 
which was named as PW model. However, this kind 
of models has a lot of arguments, so families of 
gas-kinematic models [5-8] are presented. Cho and 
Lo [9] also presented a dynamic multiclass multilane 
traffic flow model by a similar deriving procedure. 
The systematic model includes continuity, motion 
and variance equations, so as to describe the 
evolution of the traffic flow. The state of the traffic 
flow is determined by the vehicular dispersion model 
[10], which is a nonlinear Poisson equation. 

The systematic model describes the traffic 
situations that the variation of density, velocity and 
variance are significant. Fortunately, traffic flow 
situations are not always so complicated. In this 
study, a simplified model, which discusses time 
invariant velocity and variance traffic, is presented. 
Under the situation, the relation among flow, velocity 
and density can be represented by a drift-diffusion 
function [9]. Therefore, the model proposed herein is 
named as the drift-diffusion traffic flow model. The 
model, which includes a continuity equation and a 
nonlinear Poisson equation, cannot be solved 
analytically. Thus, we propose a numerical algorithm 
to approximate the solution of the model under 
steady state. Since the systematic partial differential 
equation consists of two equations, the concept of 
decoupling scheme is employed. The Poisson 
equation is solved by the finite difference scheme 
straight forward, whereas the continuity equation is 
solved by the Schafetter-Gummel scheme. After the 
derivation of the numerical algorithm, a numerical 
example is used to discuss the model and the traffic 
situation. 

The rest of this paper is organized as follows. 
Section 2 presents the drift-diffusion traffic flow 
model and its physical meanings. Section 3 
introduces the numerical scheme, which is based on 
the finite difference method. In section 4, a numerical 
example is employed to discuss the model. The 
efficiency and convergence are also demonstrated by 
the simulation results. After that, the paper concludes 
with some perspectives in section 5. 
 



 
2   Model Description 
Since a complete dynamic system includes transient 
equations and state equations, the model proposed in 
this study also follows the same viewpoint. A 
continuity equation is proposed to describe the 
propagation of the density, whereas a dispersion 
model is proposed as the state equation. Derivation 
and the physical meanings are shown in brief in the 
following paragraphs. 

The first equation mentioned herein is the the 
continuity equation [1, 2], which is represented as  

0=⋅∇+∂∂ qtk ,                                                                 (1) 

where k denotes density and q denotes flow. The 
continuity equation is derived from the conservation 
of vehicle numbers and describes the transient of 
density. Furthermore, the continuity equation can 
also be derived from multiplying Boltzmann equation 
by the zeroth moment function [6-9]. The equation is 
a simple but sufficient traffic theory if velocity and 
variance are time invariant.  

The second equation is the dispersion model [10], 
which is a nonlinear Poisson equation. The model is 
derived from the car-following theory [11-12] and 
the following assumptions. The first one is that each 
vehicle has its own field and vehicles exclude each 
other by their own field. The second one is that the 
traffic field satisfies the inverse-square law. It means 
the influence of other vehicles is larger when the 
spacing is smaller. For the sake of safety, one vehicle 
on a road adjusts its velocity and spacing according to 
the relative position between other vehicles so as to 
avoid the accident; that is, density is distributed by 
the traffic field. The traffic field acting on vehicle 0 is 
represented as 

( )∑=
N

i
iiii εe 3XXE ,                                                      (2) 

where N is the number of vehicles that may interact 
with vehicle 0, iX  denotes the spacing from vehicle i 
to vehicle 0. In the continuous space, equation (2) can 
be represented as 

( )( ) Ω−= ∫Ω dkk
ε
e

s
2XE ,                                               (3) 

where Ω  is the road section, e denotes the passenger 
car equivalent and ε  denotes the interacting 
parameter. k  is the actual density and sk  is the 
passable density under the given condition. Then, a 
potential function φ  exists by the potential theory. 
The potential function φ  satisfies φx−∇=E . Thus, 
the magnitude of traffic field is illustrated as  

( ) as Kkkediv +−=∆−= εφE ,                                       (4) 

where divE denotes the magnitude of traffic field, 
( )xKK aa = , which depends on the position x, is the 

adjust term of the road condition if the road condition 
is ideal 0=aK . Equation (4) only describe that the 
traffic field (or traffic potential) depends on density. 

Because density is distributed by the traffic field, a 
relation between density and traffic potential is 
needed. Here, we assume that the density will tend 
toward its equilibrium distribution, which is the most 
possible microscopic state under a specific 
macroscopic situation. Hence, the equilibrium 
distribution is derived from a mathematical 
programming, whose objective is finding out the 
most possible microscopic state under the specific 
macroscopic phenomena given by the constraints. 
The results is  

( )( )eeKk Θ−= ψφexp0 ,                                                  (5) 

where 0K  is the essential density, ψ  is the potential 
barrier and eΘ  is the equilibrium velocity variance. 
Equation (5) describes that as traffic potential (the 
magnitude of traffic field) increases, density 
decreases, which implies that vehicles with less 
interaction with others can spread out easily but 
induces unstable traffic flow at the same time. In the 
real traffic condition, the density does not spread out 
immediately as the traffic potential increases. There 
exists a threshold ψ . When the velocity variance is 
larger than ψ , the density will be less than the 
essential density; otherwise the density will be larger 
than the essential density. The statement means that if 

0>−ψφ , vehicles can move away freely and the 
density in the interval will be less than the essential 
density. On the other hand, if 0<−ψφ , vehicles are 
trapped in the platoon and the density will be larger 
than the essential density. There are two more points 
can be inferred from the equation. The first one is as 
the equilibrium velocity variance increases, the 
variation of density increases, which means the traffic 
is sensitive. The second one is as the potential barrier 
is low, the density is small; that is, drivers are 
aggressive. By coupling equations (4) and (5), the 
dispersion model is obtained.  

At last, the explicit form of the fundamental 
diagram is discussed. Under steady state and 
homogeneous assumption of velocity and variance, 
the relation among flow, density and velocity (u) can 
be obtained from the motion equation [9] can be 
simplified as   

( )[ ] kekekkkuq xxe ∇⋅−∇−=+Θ⋅∇−== νφµµµ Ex   (6) 
where µ  denotes the mobility of vehicles, which is a 
constant. eeΘµν =  denotes the diffusion coefficient. 



ν  is a constant, too. Equations (1), (4)~(6) are the 
equations of our model. From equation (6), flow can 
be described by the combination of drift and diffusion 
effect. Thus, the model is named as the drift-diffusion 
traffic flow model. The drift-diffusion traffic flow 
model describes the evolution of density by the 
continuity equation and evaluates the interaction 
(traffic potential) among vehicles by the dispersion 
equation. Also, the interaction distributes density by 
the dispersion equation and influences the 
propagation of density. By observing the equations, 
all variables can be determined by solving the system. 
Thus, the drift-diffusion traffic flow model is a 
self-consistent one.  

In this study, we discuss the model under the 
steady state; i.e., tk ∂∂ =0 in equation (1). We can 
rewrite the equations as follows. 

( ) 0=∇⋅−∇−⋅∇ kek xx νφµx
,                                        (7) 
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where equation (7) is the steady state continuity 
equation and equation (8) is the dispersion equation. 
After showing the model, the numerical algorithm is 
illustrated in the following section. 
 
3   Numerical Scheme 
Because there are two equations in the model, we 
present a decoupling algorithm first in this section. 
That is, the Poisson equation and the continuity 
equation are solved separately. After the both 
equations converge, the convergence of the whole 
system is examined. If the system converges, then the 
algorithm stops to compute the flow and velocity. 
The decoupled scheme is illustrated in section 3.1 
and the discretized scheme of equations (7) and (8) 
are illustrated in section 3.2.  
 
 
3.1   Decoupling Scheme 
Decoupling scheme is one of efficient solution 
methods in simulation [13]. The method decouples 
the system as two independent partial differential 
equations and then solves each partial differential 
equation iteratively. The basic idea of decoupling 
method is that the decoupled equations are solved 
sequentially, which is illustrated in figure 1. If we 
denote nφ  as the approximated potential of the nth 
outer loop iteration. In addition, nk  denotes the nth 
outer loop iteration.  

Solving procedure of the decoupling scheme is 
shown as follows. Firstly, Poisson’s equation is 
solved for nφ  by given the previous states 1−nk . 
Secondly, the continuity equation is solved for nk  by 
given nφ . Then, the convergent criterion of outer 
loop is examined. Sup norm error is the chosen 
convergent criterion in this study. Each decoupled 
partial differential equation is solved by the inner 
iterative loop. The scheme of inner loop is presented 
in the next section. 
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Fig. 1. A flowchart for decoupling scheme in traffic 

flow simulation. 
 
 
3.2   Discretization of the Model   
In this section, application of finite difference 
approximation to nonlinear Poisson equation 
(dispersion model) is presented, whereas the 
continuity equation is discretized by the 
Scarfetter-Gummel scheme [12, 13]. Firstly, the 
scheme of the nonlinear Poisson equation is derived 
as follows. 

From the fundamental theorem of integral 
calculus, we have 
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By central difference method, we can derive a 
direct computation equation (10). 
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where ih  is the length of the interval i.  
The discretization of the continuity equation is 

much more crucial. First we write the approximation 
of flow as 
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We obtain the approximation by ignoring the ( )2hO  
terms. For the interval [ ]1, +ii xx  we have  
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This equation is solved to determine the variation of 
the density along the path [ ]1, +ii xx . We have to 
assume that the partial derivative of the traffic 
potential is constant on the path under consideration, 
which is the assumption we have already invoked for 
the Poisson equation. Therefore, equation (12) can be 
considered as a first order ordinary differential 
equation of density k. The solution is 
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Assuming that ( )hOii =−+ φφ 1 , shows that the last 

term in equation (13) is ( )3hO . By ignoring this term, 
we obtain 

[ ]( ) ( )( ) ( ) 11 ,,1, ++ +−=∈ iiiiii kkgkkgxxxk φφ .             (14) 
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If ii φφ =+1 , the growth function (14) degenerates to a 
linear function. 

( )
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Therefore, the discretized scheme of continuity 
equation is represented as 
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Since density is function of potential, the 
approximation ik  is  









Θ
−

=
e

Kk
e

ii
ii

φψexp0
                                                     (18) 

By substituting equation (18) for ik  in equation (17), 
we can derive the iterative scheme. The derivation of 
the scheme is followed the idea proposed by 
Scharfetter and Gummel [12]. In this scheme, a finite 
difference approximation with exponentially fit the 
dependent variables is employed for the continuity 
equation. Because traffic potential is expected to 
change smoothly, whereas density may change 
dramatically.  
 
 
4   Numerical Example 
A complete problem of the model should include a 
set of boundary condition. The boundary conditions 
of potential is transformed from the boundary 
conditions of density. Thus, boundary conditions of 
density in traffic flow problems are discussed first. If 
the traffic condition on a boundary can be described 
by a deterministic function, a Dirichlet condition is 
chosen, such as deterministic inflow or outflow and 
no entrance and exit on the roadsides. If we only have 
the changing rate on a boundary, a Neumann 
condition is chosen. The situation takes place at the 



ramp, the signal intersection and the toll collection 
station where the service rate is easily obtained. 
Mostly, a boundary is mixed by both Dirichlet and 
Neumann condition, which is a Robin condition. A 
traffic flow problem often involves two or three types 
of boundary conditions, which is a mixed boundary 
condition problem. As a boundary condition of 
density is formulated, with proper assumption of 
driving behavior and interaction a boundary 
condition of potential is obtained. The numerical 
example in this study considers a basic section of 
highway, which is behind an intersection. The 
research domain is a single lane section with 1 km in 
length. Under the uncongested traffic, the boundary 
conditions are given as follows: 
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where the passenger car equivalent 1=e , the 
equilibrium velocity variance 16=Θe  22phrkm  and 
the 1000 =K  vehpkmpl. Assume the interacting 
parameter 600,3=ε  and the domain is ideal in 
geometry then 0=aK . The first condition in 
equation (20) means that vehicles, which is going to 
enter the interval is resisted by the existent vehicles. 
In addition, vehicles in the interval are forced to drive 
forward by an imaginary external potential. The 
second condition means the outflow depends on the 
existent density. The third one means that the density 
of inflow is determined by the inflow density from 
the front interval. The last condition gives that the 
outflow density is uniform. Through the boundary 
conditions, traffic flow is forced to move forward and 
the mobility of the vehicles is blocked by the density 
(platoon of vehicles). The unstrained density is 
assumed to describe that the front part of the research 
interval is disturbed by the inflow vehicles form 
different direction. Gradually, it gets back to the 
average value. The unrestrained density sk  is 
assumed to be  

[ ]
[ ]
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.                              (21) 

The numerical results are illustrated in figures 2 to 
5. Traffic potential decays, whereas density increases 
in the front part of the interval and then decreases. It 
means that the interaction among vehicles in the front 

part is large and forms a platoon. This results in the 
increase of the density and decrease of the velocity, 
which is shown in figure 5. Velocity, which is 
obtained from u=q/k, decreases firstly and then 
increases. Flow rate is illustrated in figure 4. It is 
almost a constant. The result is reasonable, since the 
model solved herein is under steady state.  
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Fig. 2. The plots of potential in numerical example. 
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Fig. 3. The plots of density in numerical example. 
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Fig. 4 The plots of flow rate in numerical example. 
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Fig. 5 The plots of velocity in numerical example. 

 
 
5   Conclusion 
Traffic flow theory is the fundamental research of 
traffic science. In this study, a drift-diffusion traffic 
flow model is presented. The model is also a 
self-consistent one, which describes the evolution of 
density by the continuity equation and determined the 
interaction among vehicles by the density. A 
decoupling scheme is also suggested to solve the 
system under the steady state. Furthermore, a 
numerical example of uncongested highway is 
employed to explain the traffic condition.   

There are still further works left for further 
researches, such as numerical scheme and 
simulations of time-dependent problem, scenarios of 
different traffic situation, the application of traffic 
control, extension of multilane traffic model and so 
on. In addition, as providing the real-time 
information and prediction become more and more 
important today, the efficiency and accuracy of 
numerical simulation are further important research 
topics.   
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