Applications of a Quasireflexive R Sequence of Banach Spaces

ANDREW B. PERRY
Dept. of Mathematics and Computer Science
Springfield College
263 Alden St., Springfield MA 01109
United States of America

Abstract: We make use of the James space to exhibit an R sequence of
Banach spaces which contains infinitely many quasireflexive spaces.
There are natural applications of this construction to cryptography

and error correcting codes.
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1 Introduction

R sequences are wuseful in studying the
interrelationships between Banach Spaces and their
subspaces, but few direct applications of these
sequences have been discovered [8]. In 1951 R.C.
James discovered a nonreflexive separable Banach
Space such that there is an isomorphism between J
and J** [6]. In this paper we make use of the James
space to construct an R sequence containing
infinitely many quasi- reflexive spaces. We can
exploit this property to develop a system of
cryptography which, though difficult to implement,
could be extremely secure.

2 R Sequences

A Banach space X is said to be quasireflexive (of
order k) if the quotient of X** by the natural image
of X in X** has finite dimension ( dimension k ).

Let {X;} be a sequence of Banach Spaces. For
integers j, k, with j <k, let A;y be a Banach Space
(called a transition space). Let fx : X; > Ajx and
gix: Ajx k > Xy be bounded linear functions
(called transition functions).Let Cy be the cardinality
of the set {a:a <k, X, is reflexive }.

We say that X; is a CR sequence of Banach Spaces
if the following conditions hold:

First, we require that lim (k -> o) Cy/k=1.
Second, if j;<j» and ki< ky, then

0<|If G,k ||<1and

0<|lg (ko) | =L

We say that a CR sequence is an R sequence if in
addition, for every if j;<j; and k;< kp, then
0<[f (k)| and

0<[lg (ko) |l -

The primary goal of this paper is to construct an R
sequence in which infinitely many of the spaces X;
are quasireflexive.

3 James Space
We first present some background on the James
space. For its definition, the reader may consult [6]

or almost any modern book on Banach Space
Theory, such as [4] or [12].

It is easy to verify that J is a Banach space. James
also proved that this space enjoys the following
properties. J is separable, its unit vector basis of J is
shrinking and it is is quasireflexive of order 1 .J is
isometrically isomorphic to its second dual J**.The
successive duals J*, J** .. are separable, and
therefore J cannot have subspaces isomorphic to ¢
or 1;. J is not isomorphic to a subspace of a space
with unconditional basis.

Let A be a nonempty, separable, weakly closed
subset of the unit ball of a Banach space X. Then the
following are equivalent [11].

(1) The set A is not weakly compact

(2) there is a @ for which 0 < @ <1 and a sequence
(Xxp)* € Bx* such that lim (k -> o) (x5)*x = 0 for
each x in A and sup { |[x*x| : x € A} >0 whenever
x* U co({ xp*: n € N}).

(3) There is a z* € X* such that

sup { |z*x| : x € A } is not attained.

We outline here James' proof [7] that (1) implies (2)
because of its potential implications for the



application of a quasireflexive R sequence to strong
cryptography. Suppose that A is not weakly
compact. Let V = |A| and let W be the vector space
underlying V* but with the norm given by the
formula |[v*||w = sup{ |[v¥*x| : x in A }. Since a
member of W that is a zero on A must be a zero on
V, we can see that ||.|| is really a norm on W. Let

f: A -> W be defined by the formula (f(x))(v*) =
v*x; that is, let f be the "natural map" from A in to
W,

Now since V* is a separating family of linear
functionals on V, the function is one-to-one. James
applies Helly's theorem [5] to concluded the desired
result.

4 An R sequence containing infinitely

many quasireflexive spaces

Denote by J, the 1, direct sum of n isomorphic
copies of the James space, that is,

Lh=0+1+.. 1),

Bessaga and Pelcynski [2] proved that if X and Y
are quasireflexive Banach Spaces of order m and n ,
repectively, then X + Y is quasireflexive of order
m+n .

It follows that the spaces J, are pairwise non-
isomorphic.

We first partition the positive integers as follows:

let P be the set of all integers of the form

P =Y (i=1,n) i for some integer n,

and let Q be the complement of this set in the
integers.

Ifnisin P, and if n=) (i=1,m) i, then let X, =
Jin-.

Ifnis in Q, we let X, = I, where p=2- 1/n.

Ifjkisin P thenlet A (j,k)=1J, and let f (j,k ) and
g (j,k ) be the identity maps on J.

Ifjisin P and ks in Q, then let
A (g, k)=R.Letf (G,KHx)=|x|
,and let g (j.k) = (x,x.Xx, ...).

Ifj, kis in Q then let A_(j,k) = I where q=2 - 1/j.
Let f (j,k):1q->1q

and g (j,k): 1q-> 1 (2- 1/k)

each be the identity maps.

Ifjisin P and k is in Q, then

let A (j,k)=1. Wecanletf (j,k):J->1,

and g_(j,k): I -=> 1 (2- 1/k ) be identity maps. (It is
easy to see that these maps are bounded.)

Noting that all 1, spaces with 1 <p <2 are reflexive,
it is easy to verify that the sequence X; of Banach
Spaces defined above, with transition sets and
transition functions defined above, is an R-sequence
with infinitely many quasireflexive spaces.

5 Applications to Cryptography and

Error Correcting Codes
We outline steps by which this theory could
theoretically be put into practice.

First an R sequence must be chosen with sufficiently
many quasireflexive spaces that security to make the
cost of decryption prohibitively high. In the
construction found here only finitely many spaces
are non-quasireflexive. Second, an invertible map P;
must be chosen between plaintext characters (bits or
bytes) and elements of each space X;. Of course,
this is possible due to the axiom of choice. Call the
inverse functions Q;. Finally, sender and receiver
must agree on which transition maps to employ.

A plaintext message could be interpreted as a
sequence of elements of the Banach Spaces
(X1,X2,X3,...). For added security a key
(¥1,y2,¥3,...) could be chosen in advance. Sender
would apply the functions P; to his initial
message and then send the bitstream (Q;(x;+
v1),Q2(X2 +y2),...) via an insecure channel.

Luby, Mitzenmacher, Shokrollahi, and Spielman [9]
recently discovered a simple erasure recovery
algorithm for codes derived from cascades of sparse
bipartite graphs. They adopted as their model of
errors the erasure channel introduced by Elias [3], in
which each codeword symbol is lost with a fixed
constant probability p in transit independent of all
the other symbols. Elias showed that the capacity of
the erasure channel is /-p and that a random linear
code can be used to transmit over the erasure
channel at any rate R < /-p. An R sequence with
infinitely many quasireflexive spaces could
applications in this research area as well.
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