
Digital Motion Control Development Shell 
 

ALEXANDRU ONEA1 VASILE HORGA2   CORNELIU BOŢAN1 
1Department of Automatic Control and Industrial Informatics 

2Department of Electric Drives 
 "Gh. Asachi" Technical University of Iasi 

Bd. Mangeron. 53A, 6600 Iasi 
ROMANIA 

 
 

Abstract: The paper presents a software product developed in University comparable with other industrial 
products. The digital motion control development shell solves the hard real-time constraints imposed by the AC 
drive control applications. It was developed because of lack of integrated software tools for TMS320C3Cx 
family. The main advantages of the shell proposed are: high level programming, integration in a natural way of 
the software tools delivered by Texas Instruments Inc., user-friendly programming environment, powerful 
library functions for peripherals, portability and readability of application programs. The software product can 
be used in research and in educational process as well. 
 
 
Key-Words: DSP, digital motion control, shell, programming environment, communication, macroinstructions. 
 
1   Introduction 

During the last years a lot of research has been 
carried out in the field of electrical motor drives. 
Most complex power electronic systems and 
variable speed drives now incorporate 
microprocessors controls. Some common 
characteristics can be found related to high 
complexity of control algorithms, fast sample rate 
required, need of interfacing to different kind of 
sensors, power amplifiers and motors. Several 
manufacturers make the regulators for drives motor 
in digital form and integrate it into the positioning 
control system. Some of them include in the 
software supplementary functions as self-
commissioning, flux observers or identification 
functions. A regulation concept able to incorporate 
the AC machines as the drive machine can only be 
achieved in an economically manner on a digital 
basis. The high signal processing effort for 
regulation, transformation and flow model 
computation preclude an analog system. 

Different rotor-phase configurations are 
available, requiring corresponding power inverter 
technology. Control measurements (stator voltages 
and currents, rotor velocity, etc.) are made by 
means of different transducers, each of them with 
different interfacing and conditioning requirements. 
The controller output commands can be analog or 
PWM form. 

The common characteristic for the most motor 
controller is the non-linearity. Robustness of the 

solution adopted is very important, since some 
parameters can change as a function of time or may 
be unknown. Several modern non-linear control 
methods in the control are reported in the literature 
as feedback linearisation techniques or robust 
techniques based on variable structure system [1]. 

An analysis of several control algorithms in the 
field showed a variety of computational and 
interfacing problems. Feedback linearisation and 
flux observer algorithms are the most demanding 
from the computational point of view. Some 
authors reveal that the sample rates as low as 
hundred of µs are often required to ensure dynamic 
performances. Therefore a powerful processing unit 
is required. 

Regarding the interfaces, two different classes 
of problems can be considered: process interface 
and user interface. Process interface is the most 
demanding in terms of hardware resources, while 
the user interface is strongly software dependent. 
Most of the industrial solution for digital drives 
control are closed systems, and do not allow to the 
user to modify the control algorithm or to embed 
new supplementary functions. These systems are 
not useful for research. On the other hand, papers 
reporting university research reveal a poor 
experimental activity or only simulation results are 
presented [1]. 

Taking into account all these issues, the main 
constraints imposed to a development system for 
AC drives control can be summarized as follows: 



- sample frequency in the range 20÷30 KHz, 
- signal and coefficient unitisations/computational 
delay may degrade the performances, 
- algorithms can be particularly sensitive to 
structural noise superposed to input signals, 
- efficient man/machine interfaces for simple start-
up short repair time in the event of malfunctions, 
need of powerful interfaces to serve high-order 
control levels, 
- access to internal system variables for debugging, 
statistical and optimisation purposes, 
- an easy adaptation of the drive to the motor used, 
- ability to be integrated in a wide-application 
spectrum, from single-axis stand-alone drive to 
multi-axis synchronous control systems. 

Several years ago the parallel processing was 
considered a possible solution for this kind of 
applications. In the last years almost all solutions 
reported use a Digital Signal Processor (DSP). The 
use of a fixed point DSP or a floating point DSP is 
still an open problem. 

In 1998 Texas Instruments introduced on the 
market the processor TMS320C240. This is a low 
cost fixed-point processor especially dedicated to 
electrical drives control [2]. It incorporates a PWM 
unit, 2 encoder entries, 4 timers, 2 D/A converters, 
32 I/O bytes and 2 serial interfaces. The use of the 
fixed-point arithmetic implies complex scaling 
procedures in order to maintain a high precision. 
For research purpose, that implies complex 
computation for real-time flux and speed 
estimation, rotor resistance estimation the best 
solution remains a floating point DSP as 
TMS320C31.  

The software tools provided by the 
manufacturer consist in standard tools for 
development (assembler, compiler, linker etc). 
Users eager to run their applications on a new DSP 
system are often disappointed by the lack of an 
immediate solution to classical problems like: 

 
 

- how to download a program; 
- how to check if a program works properly; 
- how to debug a program if it does not work as 
expected; 
- upload for visualization of the results, 
- inspect modify DSP program and data memory. 

In the particular case of motion control 
applications the necessity to provide a monitor is 
even stronger. Finally, a project management 
system, that provide an effective way of quickly 
visualizing, accessing and manipulating all project 
files and their dependencies, seems to be necessary 
to promote a more efficient development process. 

 
 

2   Hardware description 
A picture of the hardware structure used is 
presented in Fig.1. It consists of a C31MCDB 2.0 
development board with special feature for motion 
control and a personal computer standard platform. 
The PC platform was selected since an open system 
has to be designed and among actual standard 
systems the PC is widely available, simple and 
cost-effective. 

C31MCDB board puts together the power of 
TMS320C31 floating point DSP with a large set of 
I/O devices. Due to an RS-232 interface the board 
can be easily connected with the PC. Version 2.0 
comes with a monitor program that is automatically 
loaded from EPROM memory and executed, after 
reset. 

A Texas Instruments TMS320C31 floating point 
digital signal processor running at 32 MHz with 60 
ns cycle time that offers up to 32Mflops and 16 
MIPS in performance ensures the required 
computational power [2]. 

The board is equipped with 128Kx32 static 
RAM. The RAM chips have access time below 25 
µs, and the processor can run with no wait state 
during all external memory access. 
 

Interrupt
logic

Timer 0

Timer 1

TMS320C31

TINT0

TINT1

RINT0
XINT0

INT0

INT1

INT3

INT2

RS-232

MUX

Incremental
Encoder
Interface

A AB BZ ZA/D Converter D/A Converter

Digital
Input

Digital
Output

EPROM
   8 KB

SRAM
128K x32

 Extension BUS

DBUS

ABUS

RD
WR

High-Speed
Serial

Interface

DTR-CTS Protocol

LabWindows

Borland C++

PC Platform

Start
Conversion

   EOC-

C31MCDB 2.0

(16)

(16)

(16)

(16) (16)

 
Fig.1. Hardware structure of the C31MCDB board



The board is equipped with 128Kx32 static 
RAM. The RAM chips have access time below 25 
µs, and the processor can run with no wait state 
during all external memory access. 

The C31MCDB is a product of Technosoft S.A. 
Switzerland.  

The processor has an internal set of peripherals 
as external buses, a direct memory access channel, 
a serial port and two timers. The board is also 
provided with several interfaces, all of them useful 
in motion control applications: 4 bipolar analog 
inputs with simultaneous sampling, 4 bipolar 
analog output with independent or synchronous 
update, dual 16 bit interface for quadrature 
incremental encoder, 16 TTL digital inputs and 16 
HCMOS digital outputs, serial interface PC 
compatible supporting up to 38.4 Kbauds, 
extension bus for future development. 

The set of internal and external peripherals are 
sufficient to carry out all kind of application in the 
field of AC motion control. 

The D/A converter has double-buffered latches, 
with 2’s complement inputs. The output range is 
±5V and the channels may be independently or 
simultaneously updated with 4µs settling time. The 
D/A converter of C31MCDB board is the Analog 
Devices chip AD75004. 

The 12-bit A/D converter has four channels, all 
±10V range sampled simultaneously, thus 
preserving the relative phase information. 
C31MCDB board uses an Analog Devices AD7874 
chip, with track and hold amplifiers on each 
channel. Maximum sample rate for all four 
channels is 29 KHz. The A/D converter has a single 
read/write address. The read address is duplicated. 
That happens because TMS320C31executes 
external read cycles using static accesses (read 
strobe signal remains active during consecutive 
read cycles). This facilitates faster accesses to 
external memories but creates problems with most 
I/O devices that request low to high or high to low 
transitions for the read strobe to begin or end a read 
cycle. As effect, consecutive read accesses from the 
A/D converter, encoder interfaces, ports connected 
through extension bus and external serial interface 
are not allowed. Due to that, all I/O devices have 
duplicated read addresses. The second read 
addresses are equal to the first I/O device read 
addresses plus a 400000H offset. 

The incremental encoder interface has two 
channels. Each channel has differential inputs and 
digital noise filter. The two encoder interfaces are 
completely independent except the interrupt request 
signal linked to TMS320C31external pin INT0. 

The external serial interface is a Universal 
Asynchronous Receiver Transmitter (UART) 
interface implemented with a Philips SCC 2691 
chip, to communicate with a PC.  
 
 
3  Digital motion control development 
platform 
 
3.1   Existing software 
The board comes with a monitor program that is 
automatically loaded from EPROM. The monitor 
program works as a communication interface 
between the board and a PC. Through the serial 
link it accepts the following commands from PC: 
- A (followed by 3 bytes) – set program 
memory/data address, 
- L (followed by 1 byte) – set data block length for 
the next read/write command, 
- W (followed by data) – write data to board 
memory, starting from the address fixed by the 
previous command A, 
- R read data from the board memory, starting from 
current address fixed by the previous command A. 
The length is established by the previous command 
L. 

E executes a program loaded on the memory 
board from the current address. NULL command is 
used to restore the communication protocol after a 
communication error. 
 
 
3.2   Development requirements 
Because of the increasing complexity of DSP 
applications the designer must kept track of an 
great number of different project files, such as C, 
ASM, library and *.cmd files. The shell proposed 
in this paper provides an easy and efficient 
integration of the Texas Instruments DSP tools. It 
was developed following the natural flow of files 
processing until to the direct executable files that 
can be loaded in the target DSP system. 

Another requirement is to increase the 
portability and the readability of the C programs. 
On that purpose, it was developed a library with 
macroinstructions and functions for peripherals. 
This library is in fact a collection of drivers for 
peripherals and allows the increase of the 
programming level. A major advantage of this 
library is that allows working with peripherals 
without precise knowledge about the hardware. 

In AC drives control, especially when adaptive 
or optimal control algorithms are designed, the user 
needs to use matriceal calculus. Thus a matrix 



function library was developed. This library 
contains functions for elementary matrix 
computations. 

An easy and robust data exchange between the 
DSP board and PC is another requirement. After 
the reception of a group of data, the DSP monitor 
sends an acknowledge character and a checksum to 
confirm the correctness of the data. This protocol 
detects communication errors and guaranties the 
integrity of the exchanged data. The 
communication functions implemented on the PC 
platform must treat the response of the DSP board 
in order to guarantee the transferred data integrity. 

The C3x floating-point format is not compatible 
with the IEEE standard 754 format [3]. A problem 
is floating-point data transfer. Two routines for 
format conversions are compulsory. These routines 
must be embedded in the communication functions. 
They are useful when are transmitted and received 
floating-point data. 

The shell proposed in this paper solves all these 
requirements. A graphic representation of the 
software development flow in conjunction with the 
communication and downloaded facilities is given 
in Fig.2. 

The graphic user interface was designed using 
the LabWindows package. The graphic user 
interface was designed using the LabWindows 
package. The integrated menu is user-friendly and 
covers all common steps followed to run an 
application program on the C3MCDB. Several 
additional features are developed as: configure, 
communication test, configure link.cmd and 
configure sim.cmd. The options of the graphic user 
interface are presented in Fig.3. 

The option configure lnk.cmd uses the directives 
SECTION and MEMORY of the linker and 
specifies the structure of he DSP memory and 
peripherals. The option configure sim.cmd ensures  

the compatibility between the hardware resources 
of the DSP board and the virtual resources 
simulated in the PC. This option is very useful in 
the debugging phase of the program. The user can 
detect the addressing errors that may appear. 
 
 
3.3   Serial communication  
A set of functions for communications was 
developed to cover the communication needs 
between the PC and the DSP board. This is a set of 
high-level functions different from the elementary 
commands of the monitor. Two classes of functions 
were developed. The first one covers the transfer 
from/to the PC and the second one covers the 
transfer to/from the DSP board. The functions from 
the second class are included in the application 
program. When the application run the bi-
directional communication is ensured by these 
functions. 
The functions, included in rs232pc.h, are: 
 
 void Init_rs232(void); 
 void communic_test(void); 
 void send_byte_pc(char byte); 
 int receiv_byte_pc(void); 
 void send_float_pc(float number); 
  function call: send_byte_pc(char byte) 
 float receiv_float_pc(void); 
  function call:receiv_byte_pc(void); 
 void send(char *buffer_mem, int no_bytes); 
 void receiv(char *buffer_mem, int no_bytes); 
 
The functions, included in rs232c31.h, are: 
 
 void Init_rs232(void); 
 void send_byte_dsp(int byte); 
 int receiv_byte_dsp(void); 
 void send_float_dsp(float number); 

 

C31MCDB  Monitor PC Command interpreter

Low-level
communication

functions

Communication
functions

Extended Tektronix
Object  Format File

Hex conversion
     utility

Debugging
  Tool

Executable
COFF file

Linker

COFF object
      file

COFF object
      file

C Compiler Assembler

C source
  files

Assembler
 source files

 Editor

Peripheral
Macro&Functions

Library

Matrix
Functions
Library

(elementary commands
 C31MCDB  Monitor)

(High level functions)

Elementary commands
 C31MCDB  Monitor

 Set PM/DM Address
 Set length
 Write PM/DM
 Read PM/DM
 Go PM
 Restore communic.

• Display
• Fill
• Modify
• Evaluate
• Adjust
• Load
• Go

Software Development Flow

 
Fig.2. The shell structure 



 

 
 

 
 

 
 

 
 

 
 

 
Fig.3.  The options of the graphic user interface 

 
  function call: int c312ieee(float number) 
  void send_byte_dsp(int byte); 
 float receiv_float_dsp(void); 
  function call: float ieee2c31(int number); 
 int receiv_byte_dsp(void); 

3.4  Macroinstructions and functions for 
peripherals 
The macroinstructions and functions are designed 
for A/D and D/A converters, incremental encoder 
interface, digital I/O interface and timers. These 



macroinstructions and functions are organized in 
libraries corresponding to each peripheral device.  

The A/D conversion is done with a 
macroinstruction and a function. They are grouped 
in adcc31.h library. The macroinstruction 
START_CONV allows to start software the 
conversion an all four channels. The read address 
of the A/D converter is duplicated. The function 
float adc(a_reg) allows, by means of a_reg, to 
specify different addresses for consecutive reads: 
a_adc for the base address and a_o_adc for the 
complementary (offset) address. 

The D/A conversion can be performed with a 
macroinstruction and two functions, included in the 
dacc31.h library. The function void dac(int 
channel, float data) starts a D/A conversion on a 
specified channel with a data value. The function 
void load_dac(int channel, float data) loads the 
first buffer of specified channel without starting the 
conversion. The macroinstruction UP_DAC_ALL 
starts the D/A conversion of all four channels. 

In this manner were developed specific 
functions and macros for the other peripherals. 

 
 
3.5   Matriceal library 
A matriceal library was developed because 

several performant control algorithms use extensive 
matriceal computation (Kalman filter, Luenberger 
observer, recursive least squares estimators). This 
library contains elementary functions with matrix. 
These functions are: 
- float *Vector(int imax) –Memory allocation for a 
vector with float components and length imax, 
- float **Matrix(int imax,int jmax) - Memory 
allocation for a matrix with float components and 
size (imax,jmax), 
- int *IVector(int imax) - Memory allocation for 
vector with integer components and length imax, 
- void MatInit(float **a,int n,int m) - Initialization 
of a matrix with the size (n,m), 
- void MatUnit(float **a,int n,int m)- Return a 
matrix with the size (n,m) and the elements a(i,i)=1, 
- void MatAdd(float **a,float **b, float **c,int 
n,int m)-Compute the sum of two matrix a(i,j), 
b(i,j) and returns the sum matrix c(i,j), 
- void MatDiff(float **a,float **b, float **c,int 
n,int m)- Compute the difference of two matrix 
a(i,j), b(i,j) and returns the difference matrix c(i,j), 
- void MatProd(float **a,float **b, float **c, int l, 
int m, int n)- Compute the product of two matrix 
a(i,j), b(j,k) and returns the product matrix c(i,k), 
- void MatProdS(float **a,float b, float **c,int n,int 
m) - Compute the product of a matrix a(i,j) with a 
 

scalar value b and returns the matrix c(i,j), 
- void MatTrans(float **a,float **b,int n,int m) - 
Compute the transpose of a matrix a(i,j) and returns 
the matrix b(j,i), 
- int MatInv (float **a, float **b, int n) - Compute 
the inverse of a matrix a(i,j) and returns the  inverse 
matrix b(i,j) using LU factorization by the Crout 
method; it also test if the a is a singular matrix. 

 
 
4   Conclusions 
The electrical AC drives digital control is a real-
time problem with severe time constraints. That 
implies the use of powerful processors. The DSP is 
a solution for these control problems, but the 
software tools are poor and the integrated software 
development platform is not available for all types 
of DSP. 

The shell presented in this paper solves the 
integration problems, create an user-friendly 
programming environment, solves the 
communication aspects while an application run on 
DSP, and is an open system for further 
development. 

The strong points of this software product are: 
high-level programming, powerful functions library 
for peripheral, portability and readability of 
application programs, and an easy adaptation, if 
necessary, to another DSP board with the same 
processor. 

The key features of the digital motion control 
shell are comparable with products made by 
industrial manufacturers like DMC Developer and 
DMCD Pro, delivered by Technosoft S.A., 
Switzerland, for TMS320C2xx fixed-point 
processor family. 

The software product is also useful in research 
applications in the field of AC drives control, as 
well as in educational process. 
 
 
References 
 [1] Morici R., Rossi C., Tonielli A., Fast Prototyping of 
Nonlinear Controllers for Electric Motor Drives, 
Proceedins of the 12th IFAC World Congress, Sydney, 
Australia, Vol. 2, 1993, pp.445-450. 
[2] Nekoogar F., Moriatry G., Digital Control Using 
Digital Signal Processing, Prentice Hall, Upper Saddle 
River, NJ, 1999. 
[3] Madisetti V.K., Digital Signal Processors, IEEE 
Press and Butterworth-Heinmann, Newton, MA, 1995. 
[4] x x x, Development Tool Solutions (on CD-ROM), 
Texas Instruments, Inc., 2000. 
[5] x x x, Software Development Systems - Customer 
Support Guide CD-ROM, Texas Instruments, Inc., 2000. 
 


