
Heuristic Approaches for Solving the Multidimensional Knapsack
Problem (MKP)

R. PARRA-HERNANDEZ N. DIMOPOULOS

Department of Electrical and Computer Eng.
University of Victoria

Victoria, B.C.
CANADA

Abstract: - There are exact and heuristic algorithms for solving the MKP. Solution quality and time
complexity are two main differences among exact and heuristic algorithms. Solution quality is a measure of
how close we are from the optimal point and time complexity is a measure of the required time to reach such
point. The purpose of this paper is to report the solution quality obtained from the evaluation of three heuristic
approaches presented elsewhere in the literature and to report the solution quality obtained from the evaluation
of modified versions of those approaches. A genetic algorithm and an ant system are two of the heuristic
evaluated.

Key-Words: - Knapsack problem, Ant System, Genetic Algorithm.

1 Introduction
As it is known, the Multidimensional Knapsack
Problem (MKP) can be expressed as follows

{ }

1

1

max

1,...,

0,1 1,...,

n

j j
j

n

ij j i
j

j

p x

subject to r x b i m

x j n

=

=

≤ =

∈ =

∑

∑ (1)

where
xj represents the j-variable,
rij represents the required i-resource by

the xj variable,
bi represents the total amount of i-resource,
pj represents the value of the xj variable.

 Exact and heuristic approaches have been
proposed for solving the MKP, some of them are
[1], [6], [8] and [9]. An excellent review of the MKP
and its associated exact and heuristic algorithms is
given in [3]. As it is pointed out in [3], for the same
m, as n increases the problem become harder and
take more time to solve. Likewise, if m increases
while fixing n, the difficulty increases as well. In the
problems evaluated in this paper, n is the variable
that increases.
 For real time applications, the closer to the
optimal point and the faster that point is reached the
better. It is always possible that an optimal point

may not be found within a reasonable amount of
computational effort. Because heuristic algorithms
are faster than exact algorithms, heuristic
approaches are needed for solving problems that are
too large to be solved, in a finite amount of time, by
optimal solution procedures.
 [3] and [8] (GA and MKHEUR) are known
heuristic approaches for solving the MKP. The
heuristic approach called Ant Colony System (ACS)
appears to be interesting as well; the idea behind it
was proposed by Dorigo [4][5]. To the best of our
knowledge there is just one reported work on ant
systems applied to the MKP [7].
 The heuristic approaches MKHEUR, GA and
ACS were tested and their performance compared.
Unfortunately, the code was not made available to
us; the algorithms were coded based on the
description of the methods outlined in the
corresponding papers.
 Modifications to the mentioned heuristics were
proposed and coded as well. Comparisons and
evaluation performance, based on solution quality
and time complexity, are given for the modified
approaches. The numerical results were obtained
using MATLAB.
 The paper is organized as follows. In section 2,
descriptions of MKHEUR, GA and ACS are given;
the performance produces by each approach is
reported in the same section. In section 3
modifications to the original approaches are
suggested and evaluated. Finally, conclusion from
this work is given in section 4.

2 Heuristic approaches: MKHEUR,
GA and ACS

2.1 Multiknapsack Heuristic: MKHEUR
The procedure discussed in [8] uses a surrogate
constraint to determine the order in which variables
are fixed equal to one. The surrogate problem can be
defined as follows

{ }

1

1 1 1

max

0,1 1,...,

n

j j
j

n m m

i ij j i i
j i i

j

p x

subject to w r x w b

x j n

=

= = =

≤

∈ =

∑

∑∑ ∑ (2)

where
w={w1,...,wm} set of surrogate multipliers.

 The surrogate problem (2) is usually solved to
obtain an upper bound on the original MKP. Using

1
/ m

j j i iji
u p w r

=
= ∑ a pseudo-utility ratio is obtained

and used to determine the order of fixing equal to
one variables.
 The MKHEUR procedure is as follows:
1. Determine a set of surrogate multipliers.
2. Calculate the pseudo-utility ratios. Sort and

renumber variables according to decreasing
order of these ratios.

3. Fix variables equal to one according to the order
determined in Step 2. If fixing a variable equal
to one causes violation of one of the constraints,
fix that variable to zero and continue. Denote
the feasible solution determined in this step as
X0.

4. For each variable fixed equal to one in X0, fix
the variable equal to zero and repeat Step 3 to
defined a new feasible solution. Denote these
feasible solutions as Xz (z={1, ..., q}; q equals
the number of variables equal to one in X0)

 As Pirkul pointed out, the first solution obtained
in Step 3 (X0) is generally not optimal. This
observation and the observation that optimal
solutions differ from X0 by only a few variables, led
to Step 4. This last step attempts to capture optimal
solutions by forcing variables, which have values
one in X0 to zero. The Xz={x1, ..., xn} ∀z ∈ {0, ..., q}
that max

1

n
j jj

p x
=∑ is the solution under

MKHEUR.

2.2 Genetic Algorithm: GA
In this approach a heuristic operator that utilizes
problem-specific knowledge is incorporated into the
standard genetic algorithm. The basic steps of a GA
are
1. Generate an initial population.
2. Obtain value of individuals in the population.
3. Repeat: select parents from population

 recombine parents to produce a child
 obtain value of the child
 replace population by the child

 Until: a satisfactory solution has been found.

 In [3] an n-bit string representation, where n is
the number of variables in the MKP, is used. A
value of 0 or 1 at the j-bit implies that xj=0 or 1 in
the solution, respectively. A bit string represents a
member or individual in the population. If a bit
string represents an infeasible solution, a repair
operator is used to convert an infeasible solution
into a feasible one. The repair operator consists of
two phases.
 The first phase is called DROP. It examines each
variable in increasing order of the pseudo-utility uj
and changes the variable from one to zero if
feasibility is violated. The pseudo-utility is given by

1

/
m

j j i ij
i

u p rλ
=

= ∑ (3)

where
λi Lagrange multipliers of the LPR-MKP solution

LPR-MKP stands for Linear Programming
Relaxation of the MKP. The LPR-MKP is expressed
by (1) but using the relaxation

 0 1 1,...jx j n≤ ≤ = (4)

 The second phase is called ADD. It reverses the
process by examining each variable in decreasing
order of uj and changes the variable from zero to one
as long as feasibility is not violated. The objective of
the DROP phase is to obtain a feasible solution from
an infeasible one. The ADD phase improves, if
possible, the solution quality of a feasible solution.
 The first step in the GA approach is the creation
of an initial feasible population. Then, a tournament
selection is performed in order to select the parents
who will have a child in the GA. After the child is
created, it suffers a mutation. In the mutation, some
randomly selected bits are changed. If the child after
the mutation is infeasible, the repair operator is
used.

 If the child is a non-duplicated child, i.e., the
child is not a member of the population, then it
replaces the population member that

1
min n

j jj
p x

=∑ .

On the other hand, if the child is the same as a
member of the population it is discarded and the
tournament selection is performed again. This
process tends to improve the solution quality of the
population as time goes by.

2.3 Ant Colony System: ACS
Dorigo tried to reproduce the ant behaviour in the
ACS algorithm. Real ants are able to find a path
from a food source to a destination nest by
exploiting pheromone information. While walking,
ants deposit pheromone on the ground, and follow,
in probability, pheromone previously deposited by
other ants. As it is explained in [7], in the MKP
there are not links or paths to be followed, instead
there are variables that seems to be independent.
 The ACS works as follows: each ant generates a
complete solution (local solution) by accepting
variables according to a probabilistic state transition
rule. The rule is given by

() () () () ()/k j j j kP x x x r x x x J
β βτ η η= ∀ ∈∑ (5)

where
xj feasible j-variable
Pk(xj) probability of variable xj to be taken
 by ant k
τ(xj) pheromone value in variable xj
η(xj) pseudo-utility value of xj variable
β relative importance of pheromone
 versus pseudo-utility
Jk set of all feasible variables that
 can be taken by ant k

 There is not a single rule to assign a value for τ
and η. In our implementation, the initial value of
τ(xj) equals the value of xj given by the LPR-MKP
solution; η(xj) equals the pseudo-utility value given
by (3).
 Before accepting a variable, the ant evaluates the
variables that have not been taken by the ant yet, and
generates a set of feasible variables. A feasible
variable is one that satisfies the ant resources
constraint. The initial amount of ant resources is
given by b=[b1, ..., bm]. When the ant accepts the xj
variable the amount of its resources decreases by
r=[r1j, ..., rmj] (see (1)).
 Based on the pheromone and pseudo-utility
value, a probability value using (5) is generated for

each of the feasible variables; then a random
selection, based on the probability obtained, is
performed. It is evident, from (5), that ants prefer to
accept variables that have a high pseudo-utility
value η(xj) and a high amount of pheromone τ(xj).
When an ant accepts a variable, it decreases the
pheromone amount on that variable by applying a
local updating rule. The idea is to make the variable
less desirable and therefore it will be chosen with a
lower probability by the other ants.
 A local solution is reached when an ant either
allocates its initial resources or, although there are
available resources, it is not feasible to accept more
variables, i.e., resources are not enough. After each
ant reaches a local solution, an ant-value is
generated using

 ()
1

. 1,...,
n

j j
j

ant value r p x r R
=

= =∑ (6)

where
R represents the number of ants

 The ant with the highest ant.value(r) is chosen,
and the pheromone amount of the variables taken by
this ant is increased. This is done by applying a
global updating rule. The goal of the global
updating rule is to make the variables, which belong
to the best solution, more attractive. The variables
taken by this ant are recorded in a global memory.
This complete one cycle of the searching process.
 A new cycle is performed and, again, the ant with
the highest value is chosen. If this value is higher
than the one obtained in the last cycle, then the
global memory is updated with the new variables.
This process is done cycle after cycle and stops until
either the number of maximum cycles is reached or
a certain criterion performance is obtained.

2.4 Numerical results
As suggested in [8], the dual variables from the
LPR-MKP solution were used as the surrogate
multipliers. The performance of MKHEUR, GA,
and ACS is given in Tables 1 and 2. The approaches
were tested in 4 sets of problems. Each set has 10
problems. The problems were taken from the OR-
Library (address www.ms.ic.ac.uk/info.html).
 The OR-Library test problems evaluated are
contained in the files: mknapcb7 (first 10 problems:
Set 1), mknapcb8 (first 10 problems: Set 2) and
mknapcb9 (first 20 problems: Sets 3 and 4). The
number of variables (n) goes from 100 to 500 and
the number of constraints is 30 in all cases. For an in

detail description about how the problems were
generated and how they are organized in the
mentioned files, see [3] and OR-Library web site.
The heuristics were tested in a Pentium II 400 MHz
Personal Computer running Linux OS.

The performance of the approaches is measured by
the percentage gap between the best solution found
by the heuristic and the optimal LPR-MKP solution,
i.e., gap=100*(optimal LPR value - best solution
value) / (optimal LPR value).

 Table 1. Heuristic Performances (gap)

 MKHEUR GA ACS
Set (n) % gap mean value
1 (100) 5.20 3.71 4.40
2 (250) 2.14 1.56 2.09
3 (500) 1.05 0.86 1.14
4 (500) 0.44 0.38 0.50

 Table 2. Heuristic Performances (time)

 MKHEUR GA ACS
Set (n) time (secs)
1 (100) 0.50 >3000 <25
2 (250) 1.47 >3000 <100
3 (500) 4.50 >3000 <300
4 (500) 5.68 >3000 <500

 Because the GAP and ACS are probabilistic
algorithms, dispersion values are given in Table 3.
GA and ACS were run 100 times for each set. For
the GA, each time 106 non-duplicated children were
allowed. 100 feasible members were created for the
initial population. For the ant system, each time 10
ants were used and 50 iterations performed. β equals
log(10e2)/log(max(p.utility.value)/min(p.utility.valu
e)). Parameters needed in the local and global
updated rules were set equal to 0.1

 Table 3. Heuristic Performances (dispersion values)

 MKHEUR GA ACS
Set (n) Variance
1 (100) 0 0.2409 0.4200
2 (250) 0 0.0477 0.0625
3 (500) 0 0.0125 0.0160
4 (500) 0 0.0043 0.0355

 From Table 1 is clear that GA is the best heuristic
approach based on solution quality. Nevertheless,
GA is the heuristic that takes the longest (see Table

2). For small size problems (<250 variables) ACS
appears to be a good choice. If time matters, as it
usually does in real time applications, then
MKHEUR appears to be the option.

3 Modified Heuristic Approaches
The results obtained in the last section shows that
MKHEUR is a good heuristic based on solution
quality and time complexity. Nevertheless, GA
produces better solution quality if greater
computation time is allowed.
 GA performance can be speeded up if more
knowledge about the behaviour of the MKP solution
is incorporated into the algorithm. GA starts with the
generation of an initial population. Throughout the
algorithm the population performance is improved.
After a certain performance is reached, almost all
the individuals of the population have the same
characteristics (variables among population
members have almost the same values). The
differences are among a subset of variables. The
pseudo-utility values of this subset fall around a
band in between the highest and lowest value of the
pseudo-utility. This means that almost always all the
variables with the highest pseudo-utility are taken
and almost all the variables with the lowest pseudo-
utility are rejected. The MKHEUR solutions (Step 4
section 2.1) could be used to generate the initial
population in the GA algorithm. The population will
take the highly desirable characteristics from the
MKHEUR solutions. This will save the time
originally needed, in the GA algorithm, to start
improving the population performance.
 The solution behaviour of the knapsack problem
was originally notice by Balas and Zemel, [2], while
working on single-constraint knapsack problems. It
was noticed that the solution obtained by packing
the knapsack in the decreasing order of utility ratios
differed from the optimal solution by only a few
variables. Differing variables were always around
the point where the heuristic solution switched from
ones to zeros (after renumbering variables in
decreasing value of their ratios). A core problem
was defined as "the problems in those variables,
whose cost/weight ratio falls between the maximum
and minimum c/a ratio for which x has a different
value in an optimal solution to KP from that in an
optimal solution to LKP" (KP- single constraint
problem; LKP-linear programming relaxation of
KP). A similar statement for the MKP core problem
is given in [8].

 This knowledge about the characteristics of the
solution could be used in the next heuristic as
follows
1. Reduce the original problem. As it was

mentioned before, the variables with the lowest
pseudo-utility values are almost always rejected;
these variables represent approximately 15% of
the original problem size. After the reduction is
done, MKHEUR is applied in the new problem.
Then a re-mapping is performed in order to get
the solution, so far, in terms of the original
variables.

2. Apply a heuristic rule to get an estimation of the
core problem size and

3. Apply GA only on the core problem

3.1 MKHEURv2
 For the part concerned to the reduction of the
original problem, the following preprocessing steps
need to be done:
1. Determinate a set of Lagrange multipliers
2. Calculate the pseudo-utility ratios. Sort and

renumber variables according to decreasing
order of those ratios.

3. Fix variables equal to one according to the order
determined in the last step. If fixing a variable
equal to one causes violation of one of the
constraints, fix that variable equal to zero and
continue. Denote the feasible solution
determined as X. Calculate the pseudo-utility
mean value of X (x%).

4. Create a set of variables called Pseudo Rejected
Variables (PRV) (last 15% of the original MKP
variables with the lowest pseudo-utility ratio).

5. Merge PRVs based on their pseudo-utility ratio.
Create new variables made of packed PRVs.
The number of PRVs needed to create a new
variable depends on the pseudo-utility value of
each PRV. The pseudo-utility value of each
PRV is added up until the total pseudo-utility of
the new variable being packed is greater than
x% . The total pseudo-utility value obtained is the
pseudo-utility value of the new variable. In the
same way, the amount of resources needed by
each PRV being packed is added up. The total
amount of resources is the one required by the
new variable.

 It has to be noticed that a new problem has been
created. The size of this one is smaller than that of
the original problem. The new problem dimension is
n-rv+nv, i.e., original dimension minus number of
rejected variables plus new variables. The next step
is to apply MKHEUR to the new problem. Finally, a

mapping is performed in order to obtain the solution
found in terms of the original variables. As it is
clearly evident, the complexity of this modified
version (MKHEURv2) is greater than that of
MKHEUR, but as the number of variables increases
the complexity pays off. The time used by
MKHEURv2 to solve large-size problems is lesser
than the one needed using MKHEUR. Moreover,
MKHEURv2 seems to produce better solution
quality than MKHEUR. A comparison performance
is given in Table 4.

Table 4. MKHEUR and MKHEURv2 performance
 MKHEUR MKHEURv2

Set (n) % gap time (sec) % gap time (sec)
1 (100) 5.20 0.50 5.02 0.82
2 (250) 2.14 1.47 2.02 1.99
3 (500) 1.05 4.50 0.97 5.2
4 (500) 0.446 5.68 0.442 5.9

3.2 MKHEURv2+GA
MKHEURv2 was used to create the initial
population needed for the GA algorithm. Because
the population has highly desirable characteristics,
the number of non-duplicated children for GA was
reduced from 106 to 103. However, before merging
MKHEURv2 and GA the dimension of the core
problem has to be defined. The core problem
dimension was set equal to the dimension of the
original problem minus 80% of the first consecutive
variables equal one in solution X (section 3.1 Step
3) and minus the variables used as PRVs. The
results obtained are given in Table 5.

Table 5. GA, MKHEURv2 and MKHEURv2+GA
 performance

 GAP
(106)

MKHEURv2 MKHEURv2
 + GA (103)

Set (n) % gap
1 (100) 3.71 5.02 3.610
2 (250) 1.56 2.02. 1.601
3 (500) 0.86 0.970 0.963
4 (500) 0.38 0.442 0.420
5 (1000) 0.28 0.371 0.371

 For this section a new set of problems was
created. The set has 10 problems, each one has 30
constraints and it is made of Set 3 plus Set 4. Each
set was evaluated 100 times. It is interesting to
notice that, although the number of non-duplicated

children in the MKHEURv2+GA algorithm has
been reduced dramatically, the performance of
MKHEURv2+GA is similar as GA allowing 106
non-duplicated children (problems with 250
variables or less).

3.3 ACS + MKHEUR
It is also possible to merge ACS and MKHEUR in
order to try to obtain an approach that produces a
better performance than any one of these approaches
alone. In section 2.3 is reported that the LPR-MKP
solution is needed for the pseudo-utility ratios
estimation; this is the main step in the MKHEUR
algorithm. The MKHEUR missing step can be
implemented at the end of the ACS algorithm. When
a cycle is completed in the ACS, the best local
solution is recorded in memory. In the
ACS+MKHEUR approach, the best local solution is
considered to be X0 from Step 3 of MKHEUR (see
2.1), and then Step 4 is applied over this X0 given by
the ants. This was done and the solution quality
obtained is slightly better then the one reported for
ACS alone (about 1% better). Because the
improvement was minuscule the ACS + MKHEUR
approach was not further explored

4 Conclusion
The MKP can be used to express interesting
problems such as resource allocation. The decision
about what algorithm use to solve the MKP is
problem depended. For real time applications, time
is a critical factor to be considered and heuristic
methods are used more often over exact methods.
MKHEUR produces a good solution quality without
requiring an excessive computational time. The
LPR-MKP solution part takes more than 90% of the
time needed by MKHEUR. Therefore, any
improvement in that direction is welcome. Using
knowledge about the solution behaviour of the
MKP, a mapping of the problem is suggested and
done, and the dimension of the MKP is reduced.
Then, MKHEUR is applied and then a re-mapping
of the problem is performed in order to express the
solution in terms of the original variables.
 Because MKHEURv2 works over a smaller
dimension of the original problem, it is faster and
the solution quality seems to be better than that of
MKHEUR. It has to be pointed out that for small
size problems, MKHEURv2 is slower because the
time needed to perform the mapping is greater then
the time needed for solving the LPR-MKP. As the
problem size increases, MKHEURv2 becomes a

better candidate for solving the MKP. If more
computational time is allowed, then the GA
algorithm can be applied on a defined core section
and further improvement could be obtained.
 Heuristic approaches are divided in two sets, the
probabilistic ones and the non-probabilistic. GA and
ACS are probabilistic approaches, therefore
dispersion values must be considered if a heuristic
approach is to be chosen. It is difficult to obtain
reliable dispersion values for probabilistic
approaches due to its nature. GA and ACS were run
100 times on the same problems. It appears that
ACS produces a smaller dispersion value than GA
when the latter is allowed to generate up to 103 non-
duplicate children.

References:
[1] Balas, E. and Martin, C., Pivot and

Complement– A Heuristic for 0-1 programming,
Management Science, Vol. 26, 1980, pp. 86-96.

[2] Balas, E., and Zemel, An algorithm for large
Zero-One knapsack problems, Operations
Research, Vol. 28, 1980, pp. 1130-1154.

[3] Chu, P., and Beasley, J., A Genetic Algorithm
for the Multidimensional Knapsack Problem,
Journal of Heuristics, Vol. 4, 1998, pp. 63-86.

[4] Dorigo, M., Optimization, learning and natural
algorithms. PhD Thesis. Politecnico di Milano.
Italy. 1992.

[5] Dorigo, M., and Maniezzo, V., and Colorni, A.,
The ant system: optimization by a colony of
cooperating agents, IEEE Transactions on
Systems, Man, and Cybernetics - Part B, Vol. 26,
1996, pp. 29-41.

[6] Gavish, B. and Pirkul, H., Efficient Algorithms
for Solving the Multiconstraint Zero-One
Knapsack Problem to Optimality. Mathematical
Programming, Vol. 31, 1985, pp. 78-105.

[7] Leguizamon, G., and Michalewicz, Z., A new
version of ant system for subset problems.
Congress on Evolutionary Computation, Vol. 2,
1999, pp. 1459-1464.

[8] Pirkul, H., A Heuristic solution procedure for
the Multiconstraint Zero-One Knapsack
Problem, Naval Research Logistics, Vol. 34,
1987, pp. 161-172.

[9] Toyota, Y., A simplified algorithm for obtaining
approximate solution to Zero-One programming
problems, Management Science, Vol. 21, 1975,
pp. 1417-1427.

