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Abstract: - There are exact and heuristic algorithms for solving the MKP. Solution quality and time 
complexity are two main differences among exact and heuristic algorithms. Solution quality is a measure of 
how close we are from the optimal point and time complexity is a measure of the required time to reach such 
point. The purpose of this paper is to report the solution quality obtained from the evaluation of three heuristic 
approaches presented elsewhere in the literature and to report the solution quality obtained from the evaluation 
of modified versions of those approaches. A genetic algorithm and an ant system are two of the heuristic 
evaluated.  
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1   Introduction 
As it is known, the Multidimensional Knapsack 
Problem (MKP) can be expressed as follows 
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where 
xj represents the j-variable, 
rij represents the required i-resource by  

the xj variable, 
bi represents the total amount of i-resource, 
pj represents the value of the xj variable. 
 
     Exact and heuristic approaches have been 
proposed for solving the MKP, some of them are 
[1], [6], [8] and [9]. An excellent review of the MKP 
and its associated exact and heuristic algorithms is 
given in [3]. As it is pointed out in [3], for the same 
m, as n increases the problem become harder and 
take more time to solve. Likewise, if m increases 
while fixing n, the difficulty increases as well. In the 
problems evaluated in this paper, n is the variable 
that increases. 
     For real time applications, the closer to the 
optimal point and the faster that point is reached the 
better. It is always possible that an optimal point 

may not be found within a reasonable amount of 
computational effort. Because heuristic algorithms 
are faster than exact algorithms, heuristic 
approaches are needed for solving problems that are 
too large to be solved, in a finite amount of time, by 
optimal solution procedures. 
     [3] and [8] (GA and MKHEUR) are known 
heuristic approaches for solving the MKP. The 
heuristic approach called Ant Colony System (ACS) 
appears to be interesting as well; the idea behind it 
was proposed by Dorigo [4][5]. To the best of our 
knowledge there is just one reported work on ant 
systems applied to the MKP [7].  
     The heuristic approaches MKHEUR, GA and 
ACS were tested and their performance compared. 
Unfortunately, the code was not made available to 
us; the algorithms were coded based on the 
description of the methods outlined in the 
corresponding papers.  
     Modifications to the mentioned heuristics were 
proposed and coded as well. Comparisons and 
evaluation performance, based on solution quality 
and time complexity, are given for the modified 
approaches. The numerical results were obtained 
using MATLAB. 
     The paper is organized as follows. In section 2, 
descriptions of MKHEUR, GA and ACS are given; 
the performance produces by each approach is 
reported in the same section. In section 3 
modifications to the original approaches are 
suggested and evaluated. Finally, conclusion from 
this work is given in section 4. 



2 Heuristic approaches: MKHEUR, 
GA and ACS 

 
2.1 Multiknapsack Heuristic: MKHEUR 
The procedure discussed in [8] uses a surrogate 
constraint to determine the order in which variables 
are fixed equal to one. The surrogate problem can be 
defined as follows 
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where 
w={w1,...,wm} set of surrogate multipliers.  
 
     The surrogate problem (2) is usually solved to 
obtain an upper bound on the original MKP. Using 
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and used to determine the order of fixing equal to 
one variables. 
     The MKHEUR procedure is as follows: 
1. Determine a set of surrogate multipliers. 
2. Calculate the pseudo-utility ratios. Sort and 

renumber variables according to decreasing 
order of these ratios. 

3. Fix variables equal to one according to the order 
determined in Step 2. If fixing a variable equal 
to one causes violation of one of the constraints, 
fix that variable to zero and continue. Denote 
the feasible solution determined in this step as 
X0.  

4. For each variable fixed equal to one in X0, fix 
the variable equal to zero and repeat Step 3 to 
defined a new feasible solution. Denote these 
feasible solutions as Xz ( z={1, ..., q}; q equals 
the number of variables equal to one in X0) 

 
     As Pirkul pointed out, the first solution obtained 
in Step 3 (X0) is generally not optimal. This 
observation and the observation that optimal 
solutions differ from X0 by only a few variables, led 
to Step 4. This last step attempts to capture optimal 
solutions by forcing variables, which have values 
one in X0 to zero. The Xz={x1, ..., xn} ∀z ∈ {0, ..., q} 
that max 

1

n
j jj
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=∑  is the solution under 

MKHEUR. 
 
 

2.2 Genetic Algorithm: GA  
In this approach a heuristic operator that utilizes 
problem-specific knowledge is incorporated into the 
standard genetic algorithm. The basic steps of a GA 
are 
1. Generate an initial population. 
2. Obtain value of individuals in the population. 
3. Repeat:  select parents from population 

  recombine parents to produce a child  
  obtain value of the child  
  replace population by the child  

        Until:    a satisfactory solution has been found. 
 
     In [3] an n-bit string representation, where n is 
the number of variables in the MKP, is used. A 
value of 0 or 1 at the j-bit implies that xj=0 or 1 in 
the solution, respectively. A bit string represents a 
member or individual in the population. If a bit 
string represents an infeasible solution, a repair 
operator is used to convert an infeasible solution 
into a feasible one. The repair operator consists of 
two phases.  
     The first phase is called DROP. It examines each 
variable in increasing order of the pseudo-utility uj 
and changes the variable from one to zero if 
feasibility is violated. The pseudo-utility is given by 
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where  
λi Lagrange multipliers of the LPR-MKP solution 
 
LPR-MKP stands for Linear Programming 
Relaxation of the MKP. The LPR-MKP is expressed 
by (1) but using the relaxation  
 
 0 1 1,...jx j n≤ ≤ =   (4) 

 
     The second phase is called ADD. It reverses the 
process by examining each variable in decreasing 
order of uj and changes the variable from zero to one 
as long as feasibility is not violated. The objective of 
the DROP phase is to obtain a feasible solution from 
an infeasible one. The ADD phase improves, if 
possible, the solution quality of a feasible solution. 
     The first step in the GA approach is the creation 
of an initial feasible population. Then, a tournament 
selection is performed in order to select the parents 
who will have a child in the GA. After the child is 
created, it suffers a mutation. In the mutation, some 
randomly selected bits are changed. If the child after 
the mutation is infeasible, the repair operator is 
used.  



     If the child is a non-duplicated child, i.e., the 
child is not a member of the population, then it 
replaces the population member that 

1
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On the other hand, if the child is the same as a 
member of the population it is discarded and the 
tournament selection is performed again. This 
process tends to improve the solution quality of the 
population as time goes by.  
 
 
2.3 Ant Colony System: ACS  
Dorigo tried to reproduce the ant behaviour in the 
ACS algorithm. Real ants are able to find a path 
from a food source to a destination nest by 
exploiting pheromone information. While walking, 
ants deposit pheromone on the ground, and follow, 
in probability, pheromone previously deposited by 
other ants. As it is explained in [7], in the MKP 
there are not links or paths to be followed, instead 
there are variables that seems to be independent.  
     The ACS works as follows: each ant generates a 
complete solution (local solution) by accepting 
variables according to a probabilistic state transition 
rule. The rule is given by 
  

( ) ( ) ( ) ( ) ( )/k j j j kP x x x r x x x J
β βτ η η= ∀ ∈∑  (5) 

 
where 
xj  feasible j-variable 
Pk(xj) probability of variable xj to be taken 
  by ant k 
τ(xj)  pheromone value in variable xj 
η(xj)  pseudo-utility value of xj variable 
β  relative importance of pheromone  
  versus pseudo-utility 
Jk  set of all feasible variables that  
  can be taken by ant k 
 
     There is not a single rule to assign a value for τ 
and η. In our implementation, the initial value of 
τ(xj) equals the value of xj given by the LPR-MKP 
solution; η(xj) equals the pseudo-utility value given 
by (3).  
     Before accepting a variable, the ant evaluates the 
variables that have not been taken by the ant yet, and 
generates a set of feasible variables. A feasible 
variable is one that satisfies the ant resources 
constraint. The initial amount of ant resources is 
given by b=[b1, ..., bm]. When the ant accepts the xj 
variable the amount of its resources decreases by 
r=[r1j, ..., rmj] (see (1)).  
     Based on the pheromone and pseudo-utility 
value, a probability value using (5) is generated for 

each of the feasible variables; then a random 
selection, based on the probability obtained, is 
performed. It is evident, from (5), that ants prefer to 
accept variables that have a high pseudo-utility 
value η(xj) and a high amount of pheromone τ(xj). 
When an ant accepts a variable, it decreases the 
pheromone amount on that variable by applying a 
local updating rule. The idea is to make the variable 
less desirable and therefore it will be chosen with a 
lower probability by the other ants.  
     A local solution is reached when an ant either 
allocates its initial resources or, although there are 
available resources, it is not feasible to accept more 
variables, i.e., resources are not enough. After each 
ant reaches a local solution, an ant-value is 
generated using  
  

 ( )
1

. 1,...,
n

j j
j

ant value r p x r R
=

= =∑   (6) 

 
where 
R represents the number of ants 
 
     The ant with the highest ant.value(r) is chosen, 
and the pheromone amount of the variables taken by 
this ant is increased. This is done by applying a 
global updating rule. The goal of the global 
updating rule is to make the variables, which belong 
to the best solution, more attractive. The variables 
taken by this ant are recorded in a global memory. 
This complete one cycle of the searching process.  
     A new cycle is performed and, again, the ant with 
the highest value is chosen. If this value is higher 
than the one obtained in the last cycle, then the 
global memory is updated with the new variables. 
This process is done cycle after cycle and stops until 
either the number of maximum cycles is reached or 
a certain criterion performance is obtained.  
 
 
2.4 Numerical results 
As suggested in [8], the dual variables from the 
LPR-MKP solution were used as the surrogate 
multipliers. The performance of MKHEUR, GA, 
and ACS is given in Tables 1 and 2. The approaches 
were tested in 4 sets of problems. Each set has 10 
problems. The problems were taken from the OR-
Library (address www.ms.ic.ac.uk/info.html).   
     The OR-Library test problems evaluated are 
contained in the files: mknapcb7 (first 10 problems: 
Set 1), mknapcb8 (first 10 problems: Set 2) and 
mknapcb9 (first 20 problems: Sets 3 and 4).  The 
number of variables (n) goes from 100 to 500 and 
the number of constraints is 30 in all cases. For an in 



detail description about how the problems were 
generated and how they are organized in the 
mentioned files, see [3] and OR-Library web site. 
The heuristics were tested in a Pentium II 400 MHz 
Personal Computer running Linux OS.  
 
The performance of the approaches is measured by 
the percentage gap between the best solution found 
by the heuristic and the optimal LPR-MKP solution, 
i.e., gap=100*(optimal LPR value  -  best solution 
value) / (optimal LPR value). 
 
 
     Table 1. Heuristic Performances (gap) 

 MKHEUR   GA     ACS 
Set  (n)                  % gap mean value 
1  (100)      5.20   3.71     4.40 
2  (250)     2.14   1.56     2.09 
3  (500)     1.05   0.86     1.14 
4  (500)     0.44   0.38     0.50 

 
 
     Table 2. Heuristic Performances (time) 

 MKHEUR    GA   ACS 
Set  (n)                  time (secs) 
1   (100)     0.50 >3000 <25 
2   (250)     1.47 >3000 <100 
3   (500)     4.50 >3000 <300 
4   (500)     5.68 >3000 <500 

 
 
     Because the GAP and ACS are probabilistic 
algorithms, dispersion values are given in Table 3. 
GA and ACS were run 100 times for each set. For 
the GA, each time 106 non-duplicated children were 
allowed. 100 feasible members were created for the 
initial population. For the ant system, each time 10 
ants were used and 50 iterations performed. β equals 
log(10e2)/log(max(p.utility.value)/min(p.utility.valu
e)). Parameters needed in the local and global 
updated rules were set equal to 0.1 
 
 
     Table 3. Heuristic Performances (dispersion values) 

 MKHEUR     GA    ACS 
Set (n)                       Variance 
1  (100)       0  0.2409  0.4200 
2  (250)       0  0.0477  0.0625 
3  (500)       0  0.0125  0.0160 
4  (500)       0  0.0043  0.0355 

 
 
     From Table 1 is clear that GA is the best heuristic 
approach based on solution quality. Nevertheless, 
GA is the heuristic that takes the longest (see Table 

2). For small size problems (<250 variables) ACS 
appears to be a good choice. If time matters, as it 
usually does in real time applications, then 
MKHEUR appears to be the option.  
 
 
3 Modified Heuristic Approaches 
The results obtained in the last section shows that 
MKHEUR is a good heuristic based on solution 
quality and time complexity. Nevertheless, GA 
produces better solution quality if greater 
computation time is allowed.  
     GA performance can be speeded up if more 
knowledge about the behaviour of the MKP solution 
is incorporated into the algorithm. GA starts with the 
generation of an initial population. Throughout the 
algorithm the population performance is improved. 
After a certain performance is reached, almost all 
the individuals of the population have the same 
characteristics (variables among population 
members have almost the same values). The 
differences are among a subset of variables. The 
pseudo-utility values of this subset fall around a 
band in between the highest and lowest value of the 
pseudo-utility. This means that almost always all the 
variables with the highest pseudo-utility are taken 
and almost all the variables with the lowest pseudo-
utility are rejected. The MKHEUR solutions (Step 4 
section 2.1) could be used to generate the initial 
population in the GA algorithm. The population will 
take the highly desirable characteristics from the 
MKHEUR solutions. This will save the time 
originally needed, in the GA algorithm, to start 
improving the population performance.  
     The solution behaviour of the knapsack problem 
was originally notice by Balas and Zemel, [2], while 
working on single-constraint knapsack problems. It 
was noticed that the solution obtained by packing 
the knapsack in the decreasing order of utility ratios 
differed from the optimal solution by only a few 
variables. Differing variables were always around 
the point where the heuristic solution switched from 
ones to zeros (after renumbering variables in 
decreasing value of their ratios). A core problem 
was defined as "the problems in those variables, 
whose cost/weight ratio falls between the maximum 
and minimum c/a ratio for which x has a different 
value in an optimal solution to KP from that in an 
optimal solution to LKP" (KP- single constraint 
problem; LKP-linear programming relaxation of 
KP). A similar statement for the MKP core problem 
is given in [8]. 



     This knowledge about the characteristics of the 
solution could be used in the next heuristic as 
follows  
1. Reduce the original problem. As it was 

mentioned before, the variables with the lowest 
pseudo-utility values are almost always rejected; 
these variables represent approximately 15% of 
the original problem size. After the reduction is 
done, MKHEUR is applied in the new problem. 
Then a re-mapping is performed in order to get 
the solution, so far, in terms of the original 
variables.  

2. Apply a heuristic rule to get an estimation of the 
core problem size and  

3. Apply GA only on the core problem 
 
 
3.1 MKHEURv2 
     For the part concerned to the reduction of the 
original problem, the following preprocessing steps 
need to be done: 
1. Determinate a set of Lagrange multipliers  
2. Calculate the pseudo-utility ratios. Sort and 

renumber variables according to decreasing 
order of those ratios.  

3. Fix variables equal to one according to the order 
determined in the last step. If fixing a variable 
equal to one causes violation of one of the 
constraints, fix that variable equal to zero and 
continue. Denote the feasible solution 
determined as X. Calculate the pseudo-utility 
mean value of X ( x% ).  

4. Create a set of variables called Pseudo Rejected 
Variables (PRV) (last 15% of the original MKP 
variables with the lowest pseudo-utility ratio). 

5. Merge PRVs based on their pseudo-utility ratio. 
Create new variables made of packed PRVs. 
The number of PRVs needed to create a new 
variable depends on the pseudo-utility value of 
each PRV. The pseudo-utility value of each 
PRV is added up until the total pseudo-utility of 
the new variable being packed is greater than 
x% . The total pseudo-utility value obtained is the 
pseudo-utility value of the new variable. In the 
same way, the amount of resources needed by 
each PRV being packed is added up. The total 
amount of resources is the one required by the 
new variable.   

 
     It has to be noticed that a new problem has been 
created. The size of this one is smaller than that of 
the original problem. The new problem dimension is 
n-rv+nv, i.e., original dimension minus number of 
rejected variables plus new variables. The next step 
is to apply MKHEUR to the new problem. Finally, a 

mapping is performed in order to obtain the solution 
found in terms of the original variables. As it is 
clearly evident, the complexity of this modified 
version (MKHEURv2) is greater than that of 
MKHEUR, but as the number of variables increases 
the complexity pays off. The time used by 
MKHEURv2 to solve large-size problems is lesser 
than the one needed using MKHEUR. Moreover, 
MKHEURv2 seems to produce better solution 
quality than MKHEUR. A comparison performance 
is given in Table 4. 
 
 
Table 4. MKHEUR and MKHEURv2 performance  
 MKHEUR MKHEURv2 

Set (n) % gap time (sec) % gap time (sec) 
1  (100) 5.20 0.50 5.02 0.82 
2  (250) 2.14 1.47 2.02 1.99 
3  (500) 1.05 4.50 0.97 5.2 
4  (500) 0.446 5.68 0.442 5.9 

 
 
3.2 MKHEURv2+GA 
MKHEURv2 was used to create the initial 
population needed for the GA algorithm. Because 
the population has highly desirable characteristics, 
the number of non-duplicated children for GA was 
reduced from 106 to 103. However, before merging 
MKHEURv2 and GA the dimension of the core 
problem has to be defined. The core problem 
dimension was set equal to the dimension of the 
original problem minus 80% of the first consecutive 
variables equal one in solution X (section 3.1 Step 
3) and minus the variables used as PRVs. The 
results obtained are given in Table 5.  
 
 
Table 5. GA, MKHEURv2 and  MKHEURv2+GA 
  performance 

 GAP 
(106) 

MKHEURv2 MKHEURv2 
 + GA (103) 

Set (n)                       % gap 
1  (100) 3.71   5.02   3.610 
2  (250) 1.56   2.02.   1.601 
3  (500) 0.86   0.970   0.963 
4  (500) 0.38   0.442   0.420 
5  (1000) 0.28   0.371   0.371 

 
 
     For this section a new set of problems was 
created. The set has 10 problems, each one has 30 
constraints and it is made of Set 3 plus Set 4. Each 
set was evaluated 100 times. It is interesting to 
notice that, although the number of non-duplicated 



children in the MKHEURv2+GA algorithm has 
been reduced dramatically, the performance of 
MKHEURv2+GA is similar as GA allowing 106 
non-duplicated children (problems with 250 
variables or less). 
 
 
3.3 ACS + MKHEUR 
It is also possible to merge ACS and MKHEUR in 
order to try to obtain an approach that produces a 
better performance than any one of these approaches 
alone. In section 2.3 is reported that the LPR-MKP 
solution is needed for the pseudo-utility ratios 
estimation; this is the main step in the MKHEUR 
algorithm. The MKHEUR missing step can be 
implemented at the end of the ACS algorithm. When 
a cycle is completed in the ACS, the best local 
solution is recorded in memory. In the 
ACS+MKHEUR approach, the best local solution is 
considered to be X0 from Step 3 of MKHEUR (see 
2.1), and then Step 4 is applied over this X0 given by 
the ants. This was done and the solution quality 
obtained is slightly better then the one reported for 
ACS alone (about 1% better). Because the 
improvement was minuscule the ACS + MKHEUR 
approach was not further explored  
 
 
4   Conclusion 
The MKP can be used to express interesting 
problems such as resource allocation. The decision 
about what algorithm use to solve the MKP is 
problem depended. For real time applications, time 
is a critical factor to be considered and heuristic 
methods are used more often over exact methods. 
MKHEUR produces a good solution quality without 
requiring an excessive computational time. The 
LPR-MKP solution part takes more than 90% of the 
time needed by MKHEUR. Therefore, any 
improvement in that direction is welcome. Using 
knowledge about the solution behaviour of the 
MKP, a mapping of the problem is suggested and 
done, and the dimension of the MKP is reduced. 
Then, MKHEUR is applied and then a re-mapping 
of the problem is performed in order to express the 
solution in terms of the original variables.  
     Because MKHEURv2 works over a smaller 
dimension of the original problem, it is faster and 
the solution quality seems to be better than that of 
MKHEUR. It has to be pointed out that for small 
size problems, MKHEURv2 is slower because the 
time needed to perform the mapping is greater then 
the time needed for solving the LPR-MKP. As the 
problem size increases, MKHEURv2 becomes a 

better candidate for solving the MKP. If more 
computational time is allowed, then the GA 
algorithm can be applied on a defined core section 
and further improvement could be obtained.  
     Heuristic approaches are divided in two sets, the 
probabilistic ones and the non-probabilistic. GA and 
ACS are probabilistic approaches, therefore 
dispersion values must be considered if a heuristic 
approach is to be chosen. It is difficult to obtain 
reliable dispersion values for probabilistic 
approaches due to its nature. GA and ACS were run 
100 times on the same problems. It appears that 
ACS produces a smaller dispersion value than GA 
when the latter is allowed to generate up to 103 non-
duplicate children.  
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