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Abstract: - This paper presents a method to employ particle swarm optimization in a split architecture injected 
with a plain ‘attractor’ configuration.  This is achieved by splitting the input vector into two even sub-vectors, 
each of which is optimized in its own swarm.  Then, a plain ‘attractor’ is injected into each swarm.  The 
application of this technique to neural network training is investigated. 
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1   Introduction 
One of the first implementations of Particle Swarm 
Optimization (PSO) was that of training neural 
networks [1].   One key advantage of PSO over other 
optimization algorithms in training neural networks 
is its comparative simplicity. 

This paper describes the results of experimental 
attempts to improve the performance of the basic 
PSO by splitting the input vector into two sub-
vectors.  To do this each sub-vector is allocated its 
own swarm.  A plain swarm containing the entire 
input vector is then used as an ‘attractor’ for the two 
sub-vectors.   

PSO is a form of evolutionary computing [2].  As 
described by Eberhart and Kennedy, the PSO 
algorithm is an adaptive algorithm based on a social-
psychological metaphor; a population of individuals 
adapts by returning stochastically toward previously 
successful regions in the search space, and is 
influence by the successes of their topological 
neighbors[1]. 

Various attempts have been made to improve the 
performance of the baseline PSO with varying 
success.  Eberhart and Shi focus on optimizing the 
update equations for the particles [1].  Angeline used 
a selection mechanism in an attempt to improve the 
general quality of the particles in a swarm [5].  
Kennedy uses cluster analysis to modify the update 
equation so that particles attempt to conform to the 
center of their clusters rather than attempting to 
conform to a global best. 

A swarm consists of many particles, where each 
particle keeps track if its position, velocity, best 
position thus far, best fitness thus far, current fitness, 

and neighboring particles.  The most important 
attribute being its current position, given by an n-
dimensional vector, which corresponds to a potential 
solution of the function to be minimized.  

The velocity vector keeps track of the speed and 
direction the particle is currently traveling.  The 
particle keeps track of its current fitness (analogous 
to population members in GA), which is obtained by 
evaluating an error function at the particle’s current 
position.  The best fitness value thus far is retained 
as well as the particles position at that fitness value.  
Finally the particle also keeps track of its nearest 
neighbor’s fitness values, for use in updating its 
velocity. 

For a neural network implementation, the fitness 
value corresponds to a forward propagation through 
the network, and the position vector corresponds to 
the weight vector of the network.  The particle's best 
neighbor (yielding the lowest error) and the global 
best particle are used to guide the particle to new 
solutions.  At the end of the algorithm, the global 
best particle's position serves as the answer. 

During each epoch every particle is accelerated 
towards its best neighboring position as well as in 
the direction of the global best positions.  This is 
achieved by calculating a new velocity term for each 
particle based on its current velocity, the distance 
from its best neighbor, as well as the distance from 
the global best position.  An inertia weight, reduced 
linearly by epoch, is multiplied by the current 
velocity and the other two components are weighted 
randomly to produce the new velocity value for this 



particle, which in turn affects the next position of the 
particle during the next epoch.   
 
 
2.1   Particle Swarm Parameters 
A number of factors will affect the performance of 
the PSO.  Firstly, the number of particles in the 
swarm affects the run-time significantly, thus a 
balance between variety (more particles) and speed 
(less particles) must be sought.  Another important 
factor in the convergence speed of the algorithm is 
the maximum velocity parameter.  This parameter 
limits the maximum jump that a particle can make in 
one step, thus a too large value for this parameter 
will result in oscillations, while a too small value 
could cause the particle to become trapped in a local 
minima.  

For the implementation used in this paper, the 
maximum velocity parameter is set to the default 
value of 2 (this value was suggested in earlier works 
in PSO)[1]. 
 
 
2.2   Swarm Behavior 
The behavior of the swarm is dictated by the 
summation of the behaviors of the particles.  Each 
particle "flies" in the direction of a better solution, 
weighted by some random factor, maybe 
overshooting, or maybe finding a better or global 
better position.  The interaction between the particles 
in the swarm helps to prevent straying off, while 
keeping close to the optimal solution. 

This type of behavior seems ideal when 
exploring large search spaces, especially with a 
relatively large maximum velocity parameter.  Some 
particles will explore far beyond the current 
minimum, while the population still remembers the 
global best.  This seems to solve one of the problems 
of gradient-based algorithms.   
 
 
2.3   Multi-Swarms 
To employ a multi-swarm the solution vector is split 
amongst the different populations according to some 
rule; the simplest of the schemes does not allow any 
overlap between the spaces covered by different 
populations.  To find a solution to the original 
problem, representatives from all the populations are 
combined to form the potential solution vector, 
which, in turn, is passed on to the error function.  
This adds a new dimension to the survival game: 
cooperation between different populations.  
  
 

3   Implementation 
The multi-swarm approach involves a trade-off. 
Increasing the number of swarms leads to a directly 
proportional increase in the number of error function 
evaluations.  One function evaluation is required for 
each particle, in each swarm during each epoch.  The 
total number of error function evaluations can be 
summarized as: 
 
(1) F  =  S  x  P  x  E 
 
where F is the number of function evaluations, S is 
the number of swarms used, P is the number of 
particles per swarm and E the number of epochs 
allowed for training. 
 
  
3.1   Neural Network Architectures 
Neural networks are trained by minimizing an error 
function in  
 
(2) W = (D + 1) x M + (M + 1) x C 
 
PSOs generate potential solutions is this W-
dimensional space using a forward propagation 
through the neural network to obtain the value of he 
error function for each particle in the swarm.  This 
error value is then used directly as the particle's, 
fitness. So, constructing a particle with a lower 
fitness is synonymous with learning in the network.  
A forward propagation through the network is a 
computationally expensive task, so the aim is to find 
the best possible solution using a limited number of 
forward propagations through the network. 

To test the effectiveness of a split swarm with 
that of the injected plain swarm, a number of tests 
were performed on a two – layer feed forward neural 
network.  The following architectures were tested. 
 
Plain architecture - The plain archi-
tecture is the standard PSO used for most 
implementations.  It contains just a single swarm and 
takes the weights for the different layers to produce 
a W – dimensional vector.  This architecture is used 
as the baseline for the benchmarks. 
 
Esplit architecture - The Esplit, or 
‘Even’ split architecture takes the weights for the 
different layers and evenly divides them in two.  
During each epoch the error function is evaluated 
twice, once for each swarm. The number of epochs 
is halved to keep the number of error function 
evaluations constant. 
 



Mixed Plain/Even architecture - The 
Mixed architecture uses both a plain swarm and an 
Esplit swarm.  The Esplit swarm is evaluated as 
normal, the particles with the best positions are 
injected into a plain swarm and the error function is 
evaluated again.  In this architecture the error 
function is evaluated three times per epoch.  For this 
test the number of epochs is divided by three to keep 
the number of error function evaluations constant. 
 
 
4   Case Study – the Iris Data Set 
The Iris data set is often considered the baseline for 
learning algorithms [4].  This data set contains 150 
patterns falling into three classes.  This is considered 
to be a simple classification example, as the three 
classes are linearly separable.  A 4-input, 3-layer, 
and 3-output network architecture was used. 

For the purpose of this test 100 random Iris 
patterns were used for the training session and the 
remaining 50 used for testing.  Experiments were 
performed using 100 runs per architecture. 

Table 1 displays the findings using the three 
different architectures.  The mixed-split/plain 
architecture performed as well as the even split 
architecture, but converged much quicker and 
appears to develop a much more coherent swarm. 
 
 

 Epoch Best 
Error 

(Train) 

Ave. 
Error 

(Train) 

Error 
% 

(Test) 
Plain 5000 .010 .032 4.9 
Esplit 2500 .13 .43 3.2 
Mixed 1667 .014 .014 3.3 

 
Table 1, Comparison of three architectures. 
 
 
     The number of epochs used for each architecture 
type, normalized the total number of error functions 
calculated.  In all cases a maximum of 5000 error 
functions were allowed to be calculated.  During the 
training session the error was calculated by using the 
average sum squared of the differences.  Finally the 
error percentage is computed by the number of 
wrong answers, during the testing phase, divided by 
the total. 
 
 
5   Conclusions 
Splitting the vector to be optimized across two 
swarms for neural network training appears to 

improve performance on the Iris data set.  Injecting 
in another error calculation via a plain swarm 
appears to offer the same improved performance, but 
in less epochs and with a greater consistency among 
the swarm.  A greater consistency among the swarm 
should provide a more reliable output, with less 
variance over multiple runs. 

The results indicate the mixed split/plain 
architecture holds promise.  A more in-depth 
analysis of other neural nets is needed before a 
conclusion can be reached.  It would also be 
interesting to see how well the mixed architecture 
performs on function minimizations. 
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