
Neural Network Learning using Particle Swarm Optimizers

MATT SETTLES BART RYLANDER
 School of Engineering School of Engineering
 University of Portland University of Portland
 Portland, OR 97203 Portland, OR 97203

 U.S.A U.S.A.

Abstract: - This paper presents a method to employ particle swarm optimization in a split architecture injected
with a plain ‘attractor’ configuration. This is achieved by splitting the input vector into two even sub-vectors,
each of which is optimized in its own swarm. Then, a plain ‘attractor’ is injected into each swarm. The
application of this technique to neural network training is investigated.

Key-Words: - Particle Swarm, Neural Networks, Split Swarm

1 Introduction
One of the first implementations of Particle Swarm
Optimization (PSO) was that of training neural
networks [1]. One key advantage of PSO over other
optimization algorithms in training neural networks
is its comparative simplicity.

This paper describes the results of experimental
attempts to improve the performance of the basic
PSO by splitting the input vector into two sub-
vectors. To do this each sub-vector is allocated its
own swarm. A plain swarm containing the entire
input vector is then used as an ‘attractor’ for the two
sub-vectors.

PSO is a form of evolutionary computing [2]. As
described by Eberhart and Kennedy, the PSO
algorithm is an adaptive algorithm based on a social-
psychological metaphor; a population of individuals
adapts by returning stochastically toward previously
successful regions in the search space, and is
influence by the successes of their topological
neighbors[1].

Various attempts have been made to improve the
performance of the baseline PSO with varying
success. Eberhart and Shi focus on optimizing the
update equations for the particles [1]. Angeline used
a selection mechanism in an attempt to improve the
general quality of the particles in a swarm [5].
Kennedy uses cluster analysis to modify the update
equation so that particles attempt to conform to the
center of their clusters rather than attempting to
conform to a global best.

A swarm consists of many particles, where each
particle keeps track if its position, velocity, best
position thus far, best fitness thus far, current fitness,

and neighboring particles. The most important
attribute being its current position, given by an n-
dimensional vector, which corresponds to a potential
solution of the function to be minimized.

The velocity vector keeps track of the speed and
direction the particle is currently traveling. The
particle keeps track of its current fitness (analogous
to population members in GA), which is obtained by
evaluating an error function at the particle’s current
position. The best fitness value thus far is retained
as well as the particles position at that fitness value.
Finally the particle also keeps track of its nearest
neighbor’s fitness values, for use in updating its
velocity.

For a neural network implementation, the fitness
value corresponds to a forward propagation through
the network, and the position vector corresponds to
the weight vector of the network. The particle's best
neighbor (yielding the lowest error) and the global
best particle are used to guide the particle to new
solutions. At the end of the algorithm, the global
best particle's position serves as the answer.

During each epoch every particle is accelerated
towards its best neighboring position as well as in
the direction of the global best positions. This is
achieved by calculating a new velocity term for each
particle based on its current velocity, the distance
from its best neighbor, as well as the distance from
the global best position. An inertia weight, reduced
linearly by epoch, is multiplied by the current
velocity and the other two components are weighted
randomly to produce the new velocity value for this

particle, which in turn affects the next position of the
particle during the next epoch.

2.1 Particle Swarm Parameters
A number of factors will affect the performance of
the PSO. Firstly, the number of particles in the
swarm affects the run-time significantly, thus a
balance between variety (more particles) and speed
(less particles) must be sought. Another important
factor in the convergence speed of the algorithm is
the maximum velocity parameter. This parameter
limits the maximum jump that a particle can make in
one step, thus a too large value for this parameter
will result in oscillations, while a too small value
could cause the particle to become trapped in a local
minima.

For the implementation used in this paper, the
maximum velocity parameter is set to the default
value of 2 (this value was suggested in earlier works
in PSO)[1].

2.2 Swarm Behavior
The behavior of the swarm is dictated by the
summation of the behaviors of the particles. Each
particle "flies" in the direction of a better solution,
weighted by some random factor, maybe
overshooting, or maybe finding a better or global
better position. The interaction between the particles
in the swarm helps to prevent straying off, while
keeping close to the optimal solution.

This type of behavior seems ideal when
exploring large search spaces, especially with a
relatively large maximum velocity parameter. Some
particles will explore far beyond the current
minimum, while the population still remembers the
global best. This seems to solve one of the problems
of gradient-based algorithms.

2.3 Multi-Swarms
To employ a multi-swarm the solution vector is split
amongst the different populations according to some
rule; the simplest of the schemes does not allow any
overlap between the spaces covered by different
populations. To find a solution to the original
problem, representatives from all the populations are
combined to form the potential solution vector,
which, in turn, is passed on to the error function.
This adds a new dimension to the survival game:
cooperation between different populations.

3 Implementation
The multi-swarm approach involves a trade-off.
Increasing the number of swarms leads to a directly
proportional increase in the number of error function
evaluations. One function evaluation is required for
each particle, in each swarm during each epoch. The
total number of error function evaluations can be
summarized as:

(1) F = S x P x E

where F is the number of function evaluations, S is
the number of swarms used, P is the number of
particles per swarm and E the number of epochs
allowed for training.

3.1 Neural Network Architectures
Neural networks are trained by minimizing an error
function in

(2) W = (D + 1) x M + (M + 1) x C

PSOs generate potential solutions is this W-
dimensional space using a forward propagation
through the neural network to obtain the value of he
error function for each particle in the swarm. This
error value is then used directly as the particle's,
fitness. So, constructing a particle with a lower
fitness is synonymous with learning in the network.
A forward propagation through the network is a
computationally expensive task, so the aim is to find
the best possible solution using a limited number of
forward propagations through the network.

To test the effectiveness of a split swarm with
that of the injected plain swarm, a number of tests
were performed on a two – layer feed forward neural
network. The following architectures were tested.

Plain architecture - The plain archi-
tecture is the standard PSO used for most
implementations. It contains just a single swarm and
takes the weights for the different layers to produce
a W – dimensional vector. This architecture is used
as the baseline for the benchmarks.

Esplit architecture - The Esplit, or
‘Even’ split architecture takes the weights for the
different layers and evenly divides them in two.
During each epoch the error function is evaluated
twice, once for each swarm. The number of epochs
is halved to keep the number of error function
evaluations constant.

Mixed Plain/Even architecture - The
Mixed architecture uses both a plain swarm and an
Esplit swarm. The Esplit swarm is evaluated as
normal, the particles with the best positions are
injected into a plain swarm and the error function is
evaluated again. In this architecture the error
function is evaluated three times per epoch. For this
test the number of epochs is divided by three to keep
the number of error function evaluations constant.

4 Case Study – the Iris Data Set
The Iris data set is often considered the baseline for
learning algorithms [4]. This data set contains 150
patterns falling into three classes. This is considered
to be a simple classification example, as the three
classes are linearly separable. A 4-input, 3-layer,
and 3-output network architecture was used.

For the purpose of this test 100 random Iris
patterns were used for the training session and the
remaining 50 used for testing. Experiments were
performed using 100 runs per architecture.

Table 1 displays the findings using the three
different architectures. The mixed-split/plain
architecture performed as well as the even split
architecture, but converged much quicker and
appears to develop a much more coherent swarm.

 Epoch Best
Error

(Train)

Ave.
Error

(Train)

Error
%

(Test)
Plain 5000 .010 .032 4.9
Esplit 2500 .13 .43 3.2
Mixed 1667 .014 .014 3.3

Table 1, Comparison of three architectures.

 The number of epochs used for each architecture
type, normalized the total number of error functions
calculated. In all cases a maximum of 5000 error
functions were allowed to be calculated. During the
training session the error was calculated by using the
average sum squared of the differences. Finally the
error percentage is computed by the number of
wrong answers, during the testing phase, divided by
the total.

5 Conclusions
Splitting the vector to be optimized across two
swarms for neural network training appears to

improve performance on the Iris data set. Injecting
in another error calculation via a plain swarm
appears to offer the same improved performance, but
in less epochs and with a greater consistency among
the swarm. A greater consistency among the swarm
should provide a more reliable output, with less
variance over multiple runs.

The results indicate the mixed split/plain
architecture holds promise. A more in-depth
analysis of other neural nets is needed before a
conclusion can be reached. It would also be
interesting to see how well the mixed architecture
performs on function minimizations.

References:
[1] J. Kennedy and R. Eberhart. Swarm
 Intelligence.Morgan Kaufmann Publishers,
 2001.

 [2] S. Russell and P. Norvig. Artificial
 Intelligence, A Modern Approach.
 Prentice Hall, 1995.

 [3] Neural Network FAQ Chapter 1, pages 8-
 37,1997.ftp://ftp.sas.com/pub/neural/FAQ.ht
 ml
[4] C. Blake, E. Keogh, and CJ. Merz. UCI
 repository of machine learning databases,
 1998.
 www.ic.uci.edu/~mlearn/MLRepository.html
[5] F. van den Bergh and AP Engelbrecht.
 Cooperative Learning in Neural Networks
 using Particle Swarm Optimizers, SACJ /
 SART, No 26, 2000

