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Abstract: - We extend the work done in modeling the Genetic Algorithm (GA) from fundamental principles 
[8] by calculating a bound for convergence time for two selection schemes.  When a Lyapunov function is 
used to show convergence, we demonstrate a method whereby the same Lyapunov function can give 
convergence time.  We then calculate that bound for proportional selection and ranking selection.  Our result 
is important because to date there has only been a described expected convergence for the GA given that the 
assumptions for the Schema Theorem [3] hold [1]. 
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1 Background 
Prior work that described the expected convergence 
rate of the GA was based on the many assumptions 
underlying the Schema Theorem [3], [1].  These 
assumptions are not universally agreed upon.  
Consequently, attempts at modeling the GA from 
fundamental principles have been undertaken.  
Using techniques from dynamical systems Vose 
showed that certain genetic algorithms are focused 
[8].  We use the same techniques to give actual 
bounds on convergence times.   Vose showed that if 
a Lyapunov function is monotone, then an algorithm 
is focused. We show that if the rate of change of the 
Lyapunov function is monotone then convergence 
time can be bounded.   And, we show that the rate of 
change of the Lyapunov function is indeed 
monotone for two specific selection schemes.  
 
 
2 Convergence Time Bounded 
We assume a simple genetic algorithm with no 
crossover and no mutation.  The genetic algorithm is 
modeled by specifying a search space Ω and a 
simplex Λ of population vectors, the vertices of Λ 
being the points of Ω. The algorithm is a map G 
from Λ to Λ.  G is focused if it is continuously 
differentiable and for every p contained in Λ and for 
every p contained in Λ the following sequence 
converges:  p, G(p), G2(p), …  G will be broken 
down into a composition of two functions F and M, 

F being the selection scheme and M being a 
combination of mutation and crossover.  For our 
results, we assume M is the identity function and 
then G is the same as F. 
 
 
If G is continuously differentiable and has finitely 
many fixed points, and if there is a continuous 
function φ satisfying x ≠ G(x) ⇒ φ(x) > φ(G(x)) then 
G is focused [8].  In this setting, φ is called a 
Lyapunov function. 
 
Theorem 1: Bounded Convergence Time 
 
 If F is a continuously differentiable function 
 from Λ to Λ, and F has finitely many fixed 
 points, and φ is a Lyapunov function for F, 
 then if   φ(Fm(p))/φ(Fm-1(p)) ≥ 1 + k 
 (except when Fm(p) = Fm-1(p)) where k > 0 
 does not depend on m, then the convergence 
 time of F is bounded. 
 
Proof: 
 
 By hypothesis, 

 φ(F(p)) ≥  (1+ k) φ(p) 
 φ(F2(p)) ≥  (1+ k) φ(F(p)) 
 φ(F3(p)) ≥  (1+ k) φ(F2(p)) 

 
 By back substituting, 

φ(F3(p)) ≥  (1+ k)3 φ(p) 



 
Continuing we get, 

φ(Fn(p)) ≥  (1+ k)n φ(p) 
 

Since Λ is compact, let M be the maximum 
 of φ on Λ.  Then, 

 
Μ  ≥  φ(Fn(p)) ≥  (1+ k)n φ(p) 

 
So          M/φ(p) ≥  (1+ k)n . 

 
Therefore,  

log(M/φ(p)) ≥  nlog(1+k),  
 

and 
log(M/φ(p))/ log(1+k) ≥ n.  

 
QED 

 
 
3 Bound For Proportional Selection 
Proportional Selection is defined as F(x) = f ⋅ x/fTx, 
where f ⋅ x means (diag f) (x).  For proportional 
selection, all the components of f are assumed to be 
positive.  If p is the initial population vector, define j 
so that f(j) = max{f(i):p(i)≠0}.  If φ is defined to be 
φ(x) = x(j), then φ is a Lyapunov function for 
proportional selection [8]. 
 
Theorem 2: Convergence Bound for 
Proportional   Selection 
 

If F is a proportional selection scheme, then  
φ(Fm(p))/φ(Fm-1(p)) ≥ 1 + k 

 
(except when Fm(p) = Fm-1(p)) where k > 0 

 does not depend on m. 
 
Proof: 

It suffices to prove 
φ(F(p))/φ(p) ≥ φ(F2(p))/φ(F(p))  

 
By definition 

  φ(F(p))/φ(p) ≥  (fjpj /Σ fipi)/pj = fj/Σ fipi  
 

For convenience F(p) = q 
 

By definition 
  φ(F2(p))/φ(F(p)) ≥  (fjqj /Σ fiqi)/qj =  
  fj/Σ fiqi 

 
Comparing the last two equations, it suffices 

 to prove 

Σ fiqi ≥ /Σ fipi 
 

By the definition of F 
qk = fkpk/Σ fipi 

  fkqk = fk
2pk/Σ fipi 

  Σ fiqi = Σ fi
2pi/Σ fipi 

 
Then it suffices to prove 

  Σ fi
2pi/Σ fipi ≥ Σ fipi 

 
which is the same as 

  Σ fi
2pi ≥ (Σ fipi)2. 

 
 
To anyone experienced with inequalities, the last 
inequality looks very unlikely to be true, but it turns 
out to be true in this setting because Σ pi = 1. 
 
To prove Σ fi

2pi ≥ (Σ fipi)2 we proceed by induction. 
If N is the size of Ω, assume that N = 2. 

 
First observe that 

(f1 - f2)2 ≥ 0 
f1

2 - 2f1f2+ f2
2 ≥ 0 

 
and so  

f1
2 + f2

2 ≥ 2 f1 f2 

 
Now Σ fi

2pi = f1
2p1   + f2

2p2 

 
And because Σ pi = 1, 

  Σ fi
2pi = f1

2p1   + f2
2p2 = 

   (f1
2p1   + f2

2p2 )(p1+ p2) 
  = f1

2p1
2 + f2

2p1p2 + f1
2p1p2 + f2

2p2
2 

 
On the other side, 

  (Σ fipi)2 =( f1p1   + f2p2)2 
  = f1

2p1
2 + 2f1f2p1p2  + f2

2p2
2 

 
Then comparing these last two equations, 
and using the observation, we conclude that  

Σ fi
2pi ≥ (Σ fipi)2 for the special case N 

= 2. 
 

For N > 2, the same inequality can be 
proved by induction.  There is one 
complication, namely that Σ pi = 1is only 
true for the given N, however, the induction 
proof can be used only for the formal 
manipulation of symbols, and the actual 
inequality can be proved in the special case 
where N is the actual size of Ω for our 
instance. 

 



Now look at φ(Fn(p))/φ(Fn-1(p)), where n is the 
last n where Fn(p) ≠  Fn-1(p). 
 
Choose k so that  

 φ(Fn(p))/φ(Fn-1(p)) > 1 + k. 
 

QED 
 
This latter theorem then places the proportional 
selection scheme within the framework of Theorem 
1, which gives a bound on the convergence time. 
 
 
4 Bound For Ranking Selection 
Ranking selection is defined as the selection 
function corresponding to the selection scheme 
given by 
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continuous increasing probability density over [0,1].  
If f is defined as for proportional selection, then f is 
a Lyapunov function for ranking selection [8]. 
 
 
Theorem 3: Convergence Bound for Ranking 
Selection 
 

If F is a ranking selection scheme, then  
φ(Fm(p))/φ(Fm-1(p)) ≥ 1 + k 

 
( except when Fm(p) = Fm-1(p) ) where k > 0 
does not depend on m. 

 
Proof: 
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where ψ is a permutation of  
{0, 1, ..., n-1} such that i<j ⇒ f(ψi) <  f(ψj) 
and η is defined recursively by  ηψ0= 0, ηψi+1 

= ηψi + pψi. 
 

By the mean value theorem, 
F(p)i = ρ(ξi)pi, where ξi is a point in the 
interval  
 (ηi , ηi+pi). 

 
As in the previous proof, we would like to 
show that 

φ(F(p))/φ(p) ≥ φ(F2(p))/φ(F(p)),  
 

and we use q for the next generation, q = 
F(p). 

 The ξi will be different in each generation 
 because the interval is divided up by the pi 
in  the first generation and qi in the next 
 generation, so for notational convenience, 
we  will use ξi for the p generation and ζi for the 
 next generation q. 
 

In order to show 
φ(F(p))/φ(p) ≥ φ(F2(p))/φ(F(p)) 

 
it suffices to show 

Σ ρ(ζi)qi ≥ Σ ρ(ξi)pi . 
 
 

By definition,  
φ(F(p))/φ(p) ≥ φ(F2(p))/φ(F(p)) 

 
is the same as 

ρ(ξi)pj / pj ≥ ρ(ηj)ρ(ξj)pj  / ρ(ξj)pj 
 

This latter inequality is true if  
  ρ(ξj) ≥ ρ(ηj). 
 

Because ξj ≥ ηj from geometry, and because 
ρ is increasing, 

  ρ(ξj) ≥ ρ(ηj). 
 

QED 
 
 
Once again, this theorem places ranking selection 
within the framework of Theorem 1, and provides a 
bound for convergence time. 
 
 
5 Conclusions 
We have extended the work at modeling the GA 
from fundamental principles.  In particular, using the 
techniques from dynamical systems that Vose used 
to model the GA [8], we have demonstrated a 
method using the same Lyapunov function to derive 
a convergence time.  We showed that the rate of 
change of the Lyapunov function that indicates 
convergence is monotone.  We then used this fact to 
prove convergence time bounds for GAs that use 
proportional selection and ranking selection 
schemes. 
Real world GAs are typically more complex than the 
GA we use in our assumptions.  This does not 
necessarily detract from the significance of the 
result.  Since there is no universally agreed upon 
GA, any assumptions for mathematical modeling 
would necessarily be incomplete.  Since modeling 



the GA has proved mathematically rigorous, 
simplifications were required.  However, a more 
complete understanding of one form of GA will 
provide insight into how all GAs behave if only as a 
baseline. 

We have only proven the convergence time 
bound for two typical selection schemes.  It seems 
likely that proving convergence time bounds for 
other selection schemes such as Tournament 
selection is possible and worthwhile.  The 
calculation for Tournament selection would be an 
excellent problem for a graduate student.  If such an 
effort is undertaken, we recommend using the results 
in Theorem 1 which is a very powerful and general 
tool.  It also seems possible that convergence time 
bounds can be developed for GAs that use Mutation 
and/or Crossover, but this seems to be a truly 
complex task. 
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