
SAT Instances Construction Based on Hypergraphs

ISAAC VÁZQUEZ-MORÁN, JOSÉ TORRES-JIMÉNEZ
Department of Computational Sciences

Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Cuernavaca
Apdo. Postal 99-C, Cuernavaca Morelos, 62050

México

Abstract: - The SAT problem is one of the most important combinatorial optimization problems, it consists of
determining given a formula of propositional calculus in CNF (Conjunctive Normal Form) if exists an assignment
of truth values for the variables, that makes the whole formula true. The 3-SAT problem is the first NP-complete
problem. This paper describes a representation of SAT instances based on hypergraphs and introducing the
Signed K-Dimensional Labeled Multi-Hypergraph (SKDLMH) concept.

Key-Words: - Propositional Satisfiability, SAT Instances, Hypergraph, Conjunctive Normal Form.

1 Introduction
The SAT problem constitutes de core of the
computational complexity analysis, because is the first
problem that have been proven to be NP-complete [1],
and permits the indirect solution of many interesting
problems [2]. Due to its importance within the
computational theory are many SAT solving
algorithms. The testing of these algorithms is
dependent on the hardness of the instances used to
validate the algorithm. We assumed that the
connectivity of the clauses and complexity of the
structure in a SAT Instance takes part in their
hardness.
 The first person that use the hypergraphs to
represent SAT instances was Gallo [3] , we use the
representation of SAT Instances with hypergraphs and
introduce a new concept SKDLMH that permits a
design of well defined structures that are connected,
this structures will be converted in SAT Instances.

2 Propositional Satisfiability Problem
The Propositional Satisfiability problem (SAT) is one
of the most important optimization combinatorial
problem because is the first problem that have been
proven to be NP-complete [1].
 SAT stands for Satisfiability, and it refers to the
propositional logic problem that consists in
determining the truth values for a set of literals X
that defines a set of clauses C expressed in the
Conjunctive Normal Form (CNF). The CNF have the
form, nCCCF ...21 ∧∧= where every iC denotes

a clause and it is a disjunction of literals jX . This

truth values make the whole formula F true.

 The 3-SAT problem is the most simple and more
used problem for testing another results of
NP-Completeness [2]. The SAT problem is central to
the computational complexity analys is. Many
practical problems are NP-Complete, this means that
they can be efficiently transformed into the SAT
domain, solved in this domain and return the result to
the original domain [2].
 In this way it is desirable to find a good SAT
solving algorithm with good performance, and the
performance of SAT solving algorithms is evaluated
using SAT instances, therefore is important to create
programs that generate Hard SAT Instances. We
assumed that to generate Hard SAT instances these
must be connected and without duplicated clauses, this
is because a SAT instance that is not connected in fact
is a multiple small SAT instances, but in this moment
the generators of SAT instances more frequently used
do not ensure that the SAT instances generated are
connected and without duplicated clauses [4] [5], for
that reason is necessary define a formal mechanism to
design connected SAT instances and without
duplicated clauses.

3 Graph Theory
A graph G is defined as ()EVG ,= , where V is a
finite set different of an empty set which elements are
called nodes { }NiiV ,...,1| == , E has as element a

pair of nodes called edges (){ }VVjiE ∈∧∈= ji|, .
When a graph has a two or more edges that connect the
same pair of nodes, the graph is called multigraph.

 A hypergraph H is defined as ()HEVH ,= ,
where V is a finite set different of an empty set which
elements are called nodes { }NiiV ,...,1| == , E has
as elements thirds or more nodes called hyperedges

{ } ()
()

() ()()
()()Vzyx

Vzyxmi

zyx
zyx

eeeeE im

∈∧∧
∈∧=∧


















==

,...,,...
,...,,,...,2,1

,...,,,...,
,...,,

|,...,, 21

ωωω

ααα

ωωω

ααα

 A hypergraph is k -uniform if every hyperedge
connects the same k nodes, an example of one
hypergraph that connects four nodes with one
hyperedge is showed in the Fig. 1, this correspond to
an hypergraph with { }4,3,2,1=V and

(){ }4,3,2,1=E .

1 2

3 4

(1,2,3,4)

Fig. 1

3.1 Representing SAT instances with
Hypergraphs

Given that a SAT instance consists of a set of clauses
where each clause represents the disjunction of
literals, a particular clause can be represented by a
hyperedge that connects the nodes that represents the
variables on the clause. In this way a k -SAT Instance
is represented by a k -hypergraph in which the clauses
are k -hyperedges. The Fig. 2 represents the clauses
that involves the A, B, C, D, and E variables.

A C E

B D

(A,B,C) (C,D,E)

Fig. 2

In this moment the clauses defined do not have the
representation of signs for every variable in the clause.
For this we use a special notation for the negated
variables, a circle that joins the hyperedge that connect
to the node that represents the negated variable. The

Fig. 3 represents the clauses ()CBA ,, and

()EDC ,~, .

A C E

B D

(A,B,C) (C,~D,E)

Fig. 3

A SAT instance can contain two or more clauses that
involve the same variables but with a different sign
combination, in this way we introduce the concept of
multihypergraph to denote a graph that contains two or
more hyperedges that connect the same set of nodes
but with different signs. The Fig. 4 shows a
multi-hypergraph that represents the clauses
()C~B,A,~ and ()CB,~,A .

A C

B

(~A,B,~C) (A,~B,C)

Fig. 4

4 Signed K Dimensional Labeled
Multi-Hypergraph (SKDLMH)
A Signed K Dimensional Labeled Hypergraph
(SKDLH) H is defined as ()EVH ,= where:
 V is the K dimensional labeled vertex set (VS) with
cardinality nV = .

E is the hyperedge set (HES) with cardinality

mE = .

The VS is defined as
() () (){ }

() () () ()0...111|
,...,,,...,,...,,,,...,, 222111

≥∧∧∞<≤∧∞<≤∧∞<≤
=

nzyx
zyxzyxzyxV

iii

nnn

The HES is defined as

{ } ()
()

() () ()()
()() () () ()()∅=◊∨−=◊∧≥∧∈∧∧

∈∧≥∧=∧




















◊
◊

==

0,...,,...

,...,,2,...,2,1

,...,,...,
,,...,,

|,...,, 21

mVzyx

Vzyxemi

zyx
zyx

eeeeE

i

im

ωωω

ααα

ωωω

ααα

Graphically a vertex that appears as negated in a
hyperedge is represented with a dot in the vertex-hyperdge
joint.
 The basic operations are defined in order to manipulate
SKDLH objects:
 Create. Specified with an equal sign, creates a
SKDLH object, giving the VS and the HES . v.gr. for
K=2, S={{},{}} creates an empty 2DLH object, and
R={ {(2,2),(3,4),(5,6),(7,8)}, {{-(2,2),(3,4),(7,8)},
{-(3,4),(5,6),-(7,8)} } creates the 2DLH object whose
graphic representation is given in the Fig. 5.

3,4 7,8

5,6

2,2

Fig. 5

 Merge. Specified with ⊕ , makes the merging of
two SKDLH objects. Assuming that K=2 and
R=(RV , RE) and S=(SV , SE) are 2DLH objects their
merging is defined as:

()




∅=∩∅
∅≠∩∪∪

=⊕
sR

sRSRSR

VViff
VViffEEVV

SR
,

As can be inferred the Merge operation is
commutative, i.e. RSSR ⊕=⊕ .
 Move. Specified with K subindex, creates an
isomorphic object taking as basis one previously
created SKDLH object adjusting the labels according
the K given subindexes (and also adjusts the HES in a
consistent way). The new labels are the original labels
plus the respective given K subindexes. v.gr., for K=2,
and given that R={{(2,2),(3,4),(5,6),(7,8)},
{{(2,2),(3,4),(7,8)},{(3,4),(5,6),(7,8)}} and 2,1−= RT ,

the T object is illustrated in the Fig. 6.

2,6 6,10

4,8

1,4

Fig. 6

 Dimension Modification Operator. Specified as
superindex enables the modification of the label's

dimensions. The conversion of a SKDLH object R to a
SKDLH object S is specified using a superindex that is
added to K to produce the new object. v.gr. if R is a
4DLH object and S is a 3DLH object the creation of S
from R is specified as

1−= RS , the vertex set labels
for S are computed in a random way guaranteeing that
there is no label repetition (as can be inferred this
modifies also the vertex set in a consistent way), the
signs of the R HES are conserved in the S object. When
the result is an object of one dimension the vertex set
labels for S are computed in random way using n
labels and guaranteeing that there is no label
repetition.
 Hyperedge Sign Change. This is represented with
the minus sign − . The operation of this unitary
operator is to modify the HES of an SKDLH object, in
such a way that a sign random assignment for each
hyperedge is produced.
 Hyperedge Sign Elimination. This operator is
specified in a functional notation with the word abs
(stands for absolute), an example is: ()TabsS =
creates an S object identical to T but without signs in
the HES .
 Given an expression involving many operators is
necessary to define the next rules:
 The order of evaluation is from left to right.
 The order of operator’s evaluation is: first move
operator (underindex), then dimension updating
(upperindex), next hyperedge sign change (unitary
minus sign), next absolute operation, and at last
merge.
 Using parenthesis it is possible to force a desired
order of evaluation of an expression.
 A Signed K Dimensional Labeled
Multi-Hypergraph (SKDLMH) is a SKDLH in which at
least one hyperedge from HES appears twice with
different sign combination. For example if R is a
SKDLH and RRRS −⊕−⊕= , S is SKDLMH.

5 Construction of Connected SAT
Instances using SKDLMH
With 2K = we have a S2DLH structure, this permits
construct the structures in the bidimensional space,
after the construction of the structure we use the
Hyperedge Sign Change operator, the result of this
operation is a S2DLMH structure and we applied the
Dimension Modification Operator to reduce the
dimension and obtain a S1DLMH, the equivalence of
this object and a SAT instance is explained next.

The set of variables γ is denoted by { }VSV ∈=γ ,

the number of variables is γ=n .

The set of clauses δ is denoted by
{ }HESHE ∈=δ , the number of clauses is δ=m .

Given that, the explanation of the parallel between a
SAT clause with γ variables and a SKDLH was given
previously, then it can be concluded that the programs
that manipulates SKDLMH can be used to produce
random SAT instances that has the property of
connectedness, i.e. beginning with an arbitrary clause
we can reach all the clauses using as bridges the
variables.

To construct a 3-SAT instance with a structure that
will call Simple Triangles we define the next program:

{ }

() () (){ } () () (){ }{ }

()

() () ()(){ }
() () ()(){ }

()

1

0,

2,12/,1,1,1,2/

,2,12/,1,1,1,2/

22/1

2,2,1,2,1,1,2,2,1,2,1,1
*|

−=

−⊕=
⊕−=









+

+
=

⊕=
−=

=
=

∧+∈=

ST

SSS
USS

nn

nn
U

EndFor

RSS
nToiFor

RS
R

pairisnNnnn

i

Where n is the number of variables in the instance,

the Fig. 7 is the graphical representation of the
S2DLMH. The Fig. 8 is a possible S1DLMH
generated, with this S1DLMH the SAT instance
generated is:

() () () ()
() () () ()








∨∨∧∨∨∧∨∨∧∨∨
∧∨∨∧∨∨∧∨∨∧∨∨

5~8~232~6~7~64~148~
5~823~2676~41~48

1,1 2,1 3,1

2,2 3,2

4,1

4,2 5,2

Fig. 7

8 4 6

1 7

2

3 5

Fig. 8

6 Conclusion
This paper presents the next contributions:
A new approach to construct multihypergraphs; a
novel approach to generate SAT instances based on
multihypergraphs; with the SKDLMH and the
operations defined is possible generate SAT instances
and grouped by their structure and hardness and with
every structure designed is possible generate multiple
connected SAT instances without duplicated clauses.

References:
[1] S. A. Cook. The complexity of theorem proving

procedures. Symposium on the Theory of
Computing, New York, 1971.

[2] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
New York, 1979.

[3] G. Gallo and D. Pretolani. A new algorithm for the
propositional satisfiability problem. Departament
di informatic, University of Pisa, Corso Italy.
1992.

[4] Bart Selman, David Mitchell and Hector J.
Lavesque. Generating Hard Satisfiability
Problems. Department of Computer Science,
University of Toronto, Toronto, Ontario, Canada,
1991.

[5] S. Kirkpatrick and B. Selman. Critical Behaviour
in the Satisfiability of Random Boolean Formulae.
Racah Institute of Physics and Center of Neural
Computation, Hebrew University. Jesuralem,
Israel, 1993.

