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Abstract: - The SAT problem is one of the most important combinatorial optimization problems, it consists of 
determining given a formula of propositional calculus in CNF (Conjunctive Normal Form) if exists an assignment 
of truth values for the variables, that makes the whole formula true. The 3-SAT problem is the first NP-complete 
problem. This paper describes a representation of SAT instances based on hypergraphs and introducing the 
Signed K-Dimensional Labeled Multi-Hypergraph (SKDLMH) concept. 
 
Key-Words: - Propositional Satisfiability, SAT Instances, Hypergraph, Conjunctive Normal Form. 
 
1   Introduction 
The SAT problem constitutes de core of the 
computational complexity analysis, because is the first 
problem that have been proven to be NP-complete [1], 
and permits the indirect solution of many interesting 
problems [2]. Due to its importance within the 
computational theory are many SAT solving 
algorithms. The testing of these algorithms is 
dependent on the hardness of the instances used to 
validate the algorithm. We assumed that the 
connectivity of the clauses and complexity of the 
structure in a SAT Instance takes part in their 
hardness. 
    The first person that use the hypergraphs to 
represent SAT instances was Gallo [3] , we use the 
representation of SAT Instances with hypergraphs and 
introduce a new concept SKDLMH that permits a 
design of well defined structures that are connected, 
this  structures will be converted in SAT Instances.  
 
 
2   Propositional Satisfiability Problem  
The Propositional Satisfiability problem (SAT) is one 
of the most important optimization combinatorial 
problem because is the first problem that have been 
proven to be NP-complete [1]. 
     SAT stands for Satisfiability, and it refers to the 
propositional logic problem that consists in 
determining the truth values for a set of literals X  
that defines a set of clauses C  expressed in the 
Conjunctive Normal Form (CNF). The CNF have the 
form, nCCCF ...21 ∧∧=  where every iC  denotes 

a clause and it is a disjunction of literals jX . This 

truth values make the whole formula F  true. 

     The 3-SAT problem is the most simple and more 
used problem for testing another results of 
NP-Completeness [2]. The SAT problem is central to 
the computational complexity analys is. Many 
practical problems are NP-Complete, this means that 
they can be efficiently transformed into the SAT 
domain, solved in this domain and return the result to 
the original domain [2]. 
     In this way it is desirable to find a good SAT 
solving algorithm with good performance, and the 
performance of SAT solving algorithms is evaluated 
using SAT instances, therefore is important to create 
programs that generate Hard SAT Instances. We 
assumed that to generate Hard SAT instances these 
must be connected and without duplicated clauses, this 
is because a SAT instance that is not connected in fact 
is a multiple small SAT instances, but in this moment 
the generators of SAT instances more frequently used 
do not ensure that the SAT instances generated are 
connected and without duplicated clauses [4] [5], for 
that reason is necessary define a formal mechanism to 
design connected SAT instances and without 
duplicated clauses. 
 
 
3   Graph Theory 
A graph G  is defined as ( )EVG ,= , where V  is a 
finite set different of an empty set which elements are 
called nodes { }NiiV ,...,1| == , E  has as element a 

pair of nodes called edges ( ){ }VVjiE ∈∧∈= ji|, . 
When a graph has a two or more edges that connect the 
same pair of nodes, the graph is called multigraph. 
 



     A hypergraph H  is defined as ( )HEVH ,= , 
where V  is a finite set different of an empty set which 
elements are called nodes { }NiiV ,...,1| == , E  has 
as elements thirds or more nodes called hyperedges 
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     A hypergraph is k -uniform if every hyperedge 
connects the same k  nodes, an example of one 
hypergraph that connects four nodes with one 
hyperedge is showed in the Fig. 1, this correspond to 
an hypergraph with { }4,3,2,1=V  and 

( ){ }4,3,2,1=E . 
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Fig. 1 

3.1 Representing SAT instances with 
Hypergraphs 

Given that a SAT instance consists of a set of clauses 
where each clause represents the disjunction of 
literals, a particular clause can be represented by a 
hyperedge that connects the nodes that represents the 
variables on the clause. In this way a k -SAT Instance 
is represented by a k -hypergraph in which the clauses 
are k -hyperedges. The Fig. 2 represents the clauses 
that involves the A, B, C, D, and E variables. 
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Fig. 2 

In this moment the clauses defined do not have the 
representation of signs for every variable in the clause. 
For this we use a special notation for the negated 
variables, a circle that joins the hyperedge that connect 
to the node that represents the negated variable. The 

Fig. 3 represents the clauses ( )CBA ,,  and 

( )EDC ,~, . 
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Fig. 3 

A SAT instance can contain two or more clauses that 
involve the same variables but with a different sign 
combination, in this way we introduce the concept of 
multihypergraph to denote a graph that contains two or 
more hyperedges that connect the same set of nodes 
but with different signs. The Fig. 4 shows a 
multi-hypergraph that represents the clauses 
( )C~B,A,~  and ( )CB,~,A . 
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Fig. 4 

 
 
4   Signed K Dimensional Labeled 
Multi-Hypergraph (SKDLMH) 
A Signed K Dimensional Labeled Hypergraph 
(SKDLH ) H  is defined as ( )EVH ,=  where:  
    V  is the K dimensional labeled vertex set (VS) with 
cardinality nV = . 

E  is the hyperedge set (HES) with cardinality 

mE = . 

The VS is defined as 
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The HES  is defined as 
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Graphically a vertex that appears as negated in a 
hyperedge is represented with a dot in the vertex-hyperdge 
joint. 
    The basic operations are defined in order to manipulate 
SKDLH objects: 
    Create. Specified with an equal sign, creates a 
SKDLH object, giving the VS and the HES . v.gr. for 
K=2, S={{},{}} creates an empty 2DLH  object, and 
R={ {(2,2),(3,4),(5,6),(7,8)}, {{-(2,2),(3,4),(7,8)}, 
{-(3,4),(5,6),-(7,8)} } creates the 2DLH  object whose 
graphic representation is given in the Fig. 5. 

3,4 7,8

5,6
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Fig. 5 

    Merge. Specified with ⊕ , makes the merging of 
two SKDLH objects. Assuming that K=2 and 
R=( RV , RE ) and S=( SV , SE ) are 2DLH objects their 
merging is defined as: 
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As can be inferred the Merge operation is 
commutative, i.e. RSSR ⊕=⊕ . 
    Move. Specified with K subindex, creates an 
isomorphic object taking as basis one previously 
created SKDLH object adjusting the labels according 
the K given subindexes (and also adjusts the HES in a 
consistent way). The new labels are the original labels 
plus the respective given K subindexes. v.gr., for K=2, 
and given that R={{(2,2),(3,4),(5,6),(7,8)}, 
{{(2,2),(3,4),(7,8)},{(3,4),(5,6),(7,8)}} and 2,1−= RT , 

the T  object is illustrated in the Fig. 6. 
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Fig. 6 

    Dimension Modification Operator. Specified as  
superindex enables the modification of the label's 

dimensions. The conversion of a SKDLH object R to a 
SKDLH  object S is specified using a superindex that is 
added to K to produce the new object. v.gr. if R is a 
4DLH object and S is a 3DLH  object the creation of S 
from R is specified as 

1−= RS , the vertex set labels 
for S are computed in a random way guaranteeing that 
there is no label repetition (as can be inferred this 
modifies also the vertex set in a consistent way), the 
signs of the R HES are conserved in the S object. When 
the result is an object of one dimension the vertex set 
labels for S are computed in random way using n 
labels and guaranteeing that there is no label 
repetition. 
    Hyperedge Sign Change. This is represented with 
the minus sign − . The operation of this unitary 
operator is to modify the HES of an SKDLH  object, in 
such a way that a sign random assignment for each 
hyperedge is produced. 
    Hyperedge Sign Elimination. This operator is 
specified in a functional notation with the word abs 
(stands for absolute), an example is: ( )TabsS =  
creates an S object identical to T but without signs in 
the HES . 
    Given an expression involving many operators is 
necessary to define the next rules: 
    The order of evaluation is from left to right. 
    The order of operator’s evaluation is: first move 
operator (underindex), then dimension updating 
(upperindex), next hyperedge sign change (unitary 
minus sign), next absolute operation, and at last 
merge. 
    Using parenthesis it is possible to force a desired 
order of evaluation of an expression. 
    A Signed K Dimensional Labeled 
Multi-Hypergraph (SKDLMH) is a SKDLH in which at 
least one hyperedge from HES  appears twice with 
different sign combination. For example if R is a 
SKDLH  and RRRS −⊕−⊕= , S is SKDLMH. 
 
 
5 Construction of Connected SAT 
Instances using SKDLMH 
With 2K =  we have a S2DLH structure, this permits 
construct the structures in the bidimensional space, 
after the construction of the structure we use the 
Hyperedge Sign Change operator, the result of this 
operation is a S2DLMH structure and we applied the 
Dimension Modification Operator to reduce the 
dimension and obtain a S1DLMH, the equivalence of 
this object and a SAT instance is explained next. 

The set of variables γ  is denoted by { }VSV ∈=γ , 

the number of variables is γ=n . 



The set of clauses δ  is denoted by 
{ }HESHE ∈=δ , the number of clauses is δ=m . 

Given that, the explanation of the parallel between a 
SAT clause with γ  variables and a SKDLH was given 
previously, then it can be concluded that the programs 
that manipulates SKDLMH can be used to produce 
random SAT instances that has the property of 
connectedness, i.e. beginning with an arbitrary clause 
we can reach all the clauses using as bridges the 
variables. 

To construct a 3-SAT instance with a structure that 
will call Simple Triangles we define the next program: 
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Where n is the number of variables in the instance, 

the Fig. 7 is the graphical representation of the 
S2DLMH. The Fig. 8 is a possible S1DLMH 
generated, with this S1DLMH the SAT instance 
generated is: 
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Fig. 8 

6   Conclusion 
This paper presents the next contributions: 
A new approach to construct multihypergraphs; a 
novel approach to generate SAT instances based on 
multihypergraphs; with the SKDLMH and the 
operations defined is possible generate SAT instances 
and grouped by their structure and hardness and with 
every structure designed is possible generate multiple 
connected SAT instances without duplicated clauses. 
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