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Abstract: - The SAT problem is one of the most important combinatorial optimization pgroblems, it consists of
determining given a formula of propositional calculusin CNF (Conjunctive Normal Form) if exists an assignment
of truth values for the variables, that makes the whole formula true. The 3-SAT problem is the first NP-complete
problem. This paper describes a representation of SAT instances based on hypergraphs and introducing the
Sgned K-Dimensional Labeled Multi-Hypergraph (SKDLMH) concept.
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1 Introduction

The SAT problen congitutes de core of the
computational complexity analysis, becauseisthefirst
problem that have been proven to be NP-complete [1],
and permits the indirect solution of many interesting
problems [2]. Due to its importance within the
computational theory are many SAT solving
algorithms. The testing of these agorithms is
dependent on the hardness of the instances used to
vdidate the agorithm. We assumed that the
connectivity of the clauses and complexity of the
sructure in a SAT Instance takes part in ther
hardness.

The fird person that use the hypergraphs to
represent SAT instances was Galo [3], we use the
representation of SAT Instances with hypergraphs and
introduce a new concept SKDLMH that permits a
design of well defined structures that are connected,
this structures will be converted in SAT Instances.

2 Propositional Satisfiability Problem
The Propositiond Satisfiability problem (SAT) isone
of the most important optimization combinatorial
problem because is the first problem that have been
proven to be NP-complete [1].

SAT dands for Satisfiability, and it refers to the
propositional logic problem that consists in
determining the truth values for a set of literals X
that defines a set of clauses C expressed in the
Conjunctive Norma Form (CNF). The CNF have the

form, F =C, UC, U..C, where every C, denotes
aclause and it is a digunction of literds X, . This
truth values make the whole formula F true.

The 3SAT problem is the most simple and more
used problem for testing another results of
NP-Completeness [2]. The SAT problem is central to
the computationd complexity anaysis. Many
practical problems are NP-Complete, this means that
they can be efficiently transformed into the SAT
domain, solved in this domain and return the result to
the origind domain [2].

In this way it is dedrable to find a good SAT
solving agorithm with good performance, and the
performance of SAT solving agorithms is evauated
using SAT instances, therefore is important to create
programs that generate Hard SAT Instances. We
assumed that to generate Hard SAT instances these
must be connected and without duplicated clauses, this
isbecause a SAT instance that is not connected in fact
isamultiple small SAT instances, but in this moment
the generators of SAT instances more frequently used
do not ensure that the SAT instances generated are
connected and without duplicated clauses [4] [9], for
that reason is necessary define aformal mechanism to
design connected SAT instances and without
duplicated clauses.

3 Graph Theory

A graph G is defined as G = (V E), whereV isa
finite set different of an empty set which elements are
called nodesV ={i |i =1,..., N}, E hasaselementa
pair of nodescalled edges E ={(i, j)|iT V Uji V}.
When agraph has atwo or more edgesthat connect the
same pair of nodes, the graph is called multigraph.



A hypergraph H is defined as H =(V,HE)
where V isafinite set different of an empty set which
dementsare called nodes V :{i i =1,..., N}, E has
as elements thirds or more nodes called hyperedges
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A hypergraph is k -uniform if every hyperedge
connects the same k nodes, an example of one
hypergraph that connects four nodes with one
hyperedge is showed in the Fg. 1, this correspond to

an  hypergraph  with V ={1,2,3,4} and
={{1234}.
(1,2,3,4)
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Fig. 1

SAT instances with

3.1 Representing

Hypergraphs
Given that a SAT instance consists of a set of clauses
where each clause represents the digunction of
literals, a particular clause can be represented by a
hyperedge that connects the nodes that represents the
variables on the clause. In thisway ak -SAT Instance
is represented by a k -hypergraph in which the clauses
are k -hyperedges. The Fig. 2 represents the clauses
that involvesthe A, B, C, D, and E variables.

Fig. 2

In this moment the clauses defined do not have the
representation of signsfor every variable in the clause.
For this we use a special notation for the negated
variables, acirclethat joinsthe hyperedge that connect
to the node that represents the negated variable. The

Fig. 3 represents the clauses (A, B,C) and
(c.~D,E).

Fig. 3

A SAT instance can contain two or more clauses that
involve the same variables but with a different sign
combination, in this way we introduce the concept of
multihypergraph to denote a graph that contains two or
more hyperedges that connect the same set of nodes
but with different signs. The Fg 4 shows a
multi-hypergraph  that represents the clauses

(~A,B,~C) and (A,~B,C).

Fig. 4

4 Signed K Dimensional Labeled
Multi-Hypergraph (SKDLMH)
A Signed K Dimensona Labeled Hypergraph
(KDLH) H isdefinedas H =(V,E) where:

V istheK dimensional labekd vertex set (VS) with
cardindlity V| =n

E is the hyperedge set (HES) with cardindity
Ej=m

T

he VS is defined as
V={( X5 Vi Zy e .),(xz,yz,22,...),...,(xn,yn,zn,...)}
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Graphically a vertex that appears as negated in a
hyperedge is represented with a dot in the vertexhyperdge
joint.

The basic operations are defined in order to manipulate
SKDLH objects:

Create. Specified with an equal sign, creates a

SKDLH object, giving the VS and the HES. v.gr. for
K=2, S={{} {}} creates an empty 2DLH object, and

R={ {(22),(34),(56).(78)}, {{-(22),(34).(7.8)},
{-(3,4),(56)-(7,8)} } createsthe 2DLH object whose
graphic representation is given in the Fig. 5.

Fig.5

Merge. Specified with A , makes the merging of

two KDLH objects. Assuming that K=2 and
R=(Vx, Eg) and S=(V, ES) are 2DLH objects their
merging is defined as.
A s:}(VR EV,,EL.EE) iff V.CV,1 /&
1 /e iff Vo CV, = A&
As can be infered the Merge operaion is
commutative, i.e. RA S=SAR.

Move. Specified with K subindex, creates an
isomorphic object taking as basis one previoudy
created SKDLH object adjusting the labels according
the K given subindexes (and also adjuststhe HES ina
consistent way). The new labels are the original 1abels
plus the respective given K subindexes. v.gr., for K=2,
and gven tha R={{(22),(34),506),(78)},
{{(2,2),(3,4),(7,8)} 1{ (314)!(5!6)1(7’8)}} andT = R— 12

the T objectisillugtrated in the Fig. 6.

Fig.6

Dimension Modification Operator. Specified as
superindex enables the modification of the labd's

dimensions. The conversion of a SKDLH object Rto a
XKDLH object Sis specified using a superindex that is
added to K to produce the new object. v.gr. if Risa
4DLH object and Sisa3DLH object the creation of S

from R is specified as S= R'*, the vertex set labels
for Sare computed in arandom way guaranteeing that
there is no label repetition (as can be inferred this
modifies also the vertex set in a consistent way), the
signs of theRHES are conserved in the S object. When
the result is an object of one dimension the vertex set
labels for S are computed in random way using n
labels and guaranteeing that there is no labe
repetition.

Hyperedge Sign Change. Thisis represented with
the minus sign - . The operation of this unitary
operator isto modify the HES of an SKDLH object, in
such a way that a sign random assignment for each
hyperedge is produced.

Hyperedge Sign Elimination. This operator is
specified in a functional notation with the word abs

(stands for absolute), an example is. S= abs(T)
createsan Sobject identical to T but without signsin
the HES.

Given an expression involving many operators is
necessary to define the next rules:

The order of evaluation is from left to right.

The order of operator's evauation is. firss move
operator (underindex), then dimension updating
(upperindex), next hyperedge sign change (unitary
minus sign), next absolute operation, and at last
merge.

Using parenthesis it is possible to force a desired
order of evaluation of an expression.

A Signed K Dimensional L abeled
Multi-Hypergraph (SKDLMH) isaSKDLH inwhich at
least one hyperedge from HES appears twice with
different sign combination. For example if R is a

KDLH and S= RA - RA -R, Sis SKDLMH.

5 Consruction of Connected SAT

Instancesusing SKDLMH

With K =2 we have aS2DLH dtructure, this permits
construct the structures in the bidimensiona space,
after the construction of the structure we use the
Hyperedge Sign Change operator, the result of this
operation is a S2DLMH structure and we applied the
Dimenson Modification Operator to reduce the
dimension and obtain a SIDLMH, the equivaence of
this object and a SAT instance is explained next.

The st of variables g isdenoted by g ={V 1 VS},
the number of varigblesis n =|g|.



The set of clauses d is denoted by
d ={HET HES}, the number of dausesis m=[d|.

Given that, the explanation of the parallel between a
SAT clause with g variables and aSKDLH was given
previoudly, then it can be concluded that the programs
that manipulates SKDLMH can be used to produce
random SAT instances that has the property of
connectedness, i.e. beginning with an arbitrary clause
we can reech dl the clauses using as bridges the
variables.

To construct a 3SAT instance with a structure that
will call Simple Triangles we define the next program:

n={n|nT +N*Unis pair }

R ={(t1) (21) (2.2)}.{(t2) (21) (2.2)}}
S=R

For i =1To (n/2)- 2

S=SAR,
EndFor
U = 1{(n/21),@1) ((n/2)+1,2)}i
H{n/22),@1), (h/2)+ 1,2}
s=-(SAu)
S=SA-s
T=8"

Where n is the number of variables in the instance,
the Fig. 7 is the graphica representation of the
SDLMH. The Fg. 8 is a possble SIDLMH
generated, with this SIDLMH the SAT instance
generated is:

s
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6 Conclusion

This paper presents the next contributions:

A new approach to construct multinypergraphs, a
novel approach to generate SAT instances based on
multihypergraphs, with the SKDLMH and the
operations defined is possible generate SAT instances
and grouped by their structure and hardness and with
every structure designed is possible generate multiple
connected SAT instances without duplicated clauses.
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