
Optimal Population Size and the Genetic Algorithm

 STANLEY GOTSHALL BART RYLANDER
School of Engineering School of Engineering

 University of Portland University of Portland
 Portland, Or 97203 Portland, Or 97203

 U.S.A. U.S.A.

Abstract: - We conduct experiments to determine the optimum population size for problems as the instance size
varies. We show that increasing the population size increases the accuracy of the GA. Increasing population size
also causes the number of generations to converge to increase. The optimal population for a given problem is the
point of inflection where the benefit of quick convergence is offset by increasing inaccuracy. Finally, we propose
a method that might be used for determining the optimum population size for a given problem instance. This
method holds for all three of the dissimilar problems that were used to conduct the experiment. It seems possible
that it may hold for all GA applicable problems.

Key-Words: - Genetic Algorithm, Population, Optimization, Evolutionary Computation

1 Introduction
The genetic algorithm (GA) is a method of
computation that simulates biological evolution
[1][2]. This method is typically used to optimize
functions that are intractable or have large or
unknown search spaces. Despite years of successful
application to a wide array of problems, little
consensus has been generated concerning the
optimum population size that should be used [3].
The reasons are multiple but stem from a lack of
recognition of the difference between problems and
problem instances.

Typically, a practitioner will try a range of
population sizes before settling on a size that seems
to work best with his problem instance. Since
problems and their instances vary greatly, so it would
seem do the optimum population sizes.

We need to carefully distinguish between a
problem, and a problem instance. We will usually
refer to the latter simply as an “instance”. A problem
is a mapping from problem instances onto solutions.
For example, consider the Maximum Clique (MC)
problem, which is to find the largest complete
subgraph H of a given graph G. An instance of MC
would be a particular graph G, whereas the problem
MC is essentially the set of all pairs (G, H) where H
is a maximal clique in G.

The goal of our research is to determine the
optimum population size for a GA as a function of
the instance size. As an example, consider the
problem Sort (i.e. given an unsorted array of size n,
return a sorted array). We want to empirically
determine the optimum population size (by optimum,

we mean the size that causes the quickest
convergence) for an instance of size n. Then, see if
this optimum holds as we increase the size of n. We
want to know if the optimum population size remains
constant; remains a constant percentage of the search
space; or if some other consistent characteristic
arises.

2 Test Parameters
Our experiment was conducted using 50% elitism,
single point crossover, and 1% mutation. For each
problem we began with instances of size 4 and then
increased size until the problem was untractable. For
each instance size we began with a population of 4
chromosomes and then increased until a recognizable
pattern emerged or the optimum population was
determined. We then collected data for each problem
across all instance sizes to see if there was a pattern.
To give the greatest insurance that our results were
not problem specific we selected three dissimilar
problems for conducting our research.

The first problem is Maximum 1's. See definition
1.

Definition 1, Maximum 1's.

Given: A string of length n.
Find: Maximum number of 1's that can be

 in that string.

This is probably the easiest known problem for a GA
to solve. For all but very large n, the GA converges
in only a few generations.

The next problem is Sort. See definition 2.

Definition 2, Sort.

Given: An unsorted array of length n.
Find: The sorted array for some
 predefined condition.

This problem was selected because of its uniform
familiarity and because it is a problem known to be
in P (i.e. the class of problems solvable in polynomial
time with a Turing Machine)[6].
 The last problem to be examined in our
experiment is Maximum Clique (MC). See definition
3.

 Definition 3, Maximum Clique.

 Given: A graph G.
 Find: The largest complete subgraph H in
 G.

This problem was chosen because it is a known NP-
Complete Hard problem (i.e. NP is the class of
problems solvable in polynomial time with a
Nondeterministic Turing Machine)[4][5].

Given this range of very different problems we
conjecture that any emerging population
characteristics may hold for all problems that GAs
can be successfully applied to.

3 Results
After conducting our experiments, we tabulated them
on a per problem basis. Later, we grouped the results
as a whole to see if there were commonalties.

3.1 Maximum 1's
The first problem we examined was Maximum 1's.
We observed the generations to convergence for
populations of 4 and 8 is within 2 and 10 generations
for all instance sizes tested. We conjecture this quick
convergence is due to the high probability that the
initial state of a small population will find a sub
optimal solution and converge to that solution. Of

the 250 tests per population, the percent of incorrect
solutions remained above 98%. Using an instance
size of 12 bits and a population of 200, convergence
occurs in an average of 20 generations. However,
this population size yields an average of 60 incorrect
solutions out of 250. The percentage of correct
solutions appears to increase steadily as population
size increases.

Although accuracy increases with population size,
there is a tradeoff with how many generations the
population needs to converge. With larger
populations, the advantage of converging in a
reasonable number of generations diminishes. See
figure 1.

12-bit Maximum Ones Graph (1% Mutation)

y = 4E-07x3 - 0.0004x2 + 0.1168x
+ 6.383

-20

0

20

40

60

80

100

-100 400 900

Population Size

Average # of
Generations to
Convergence

of Incorrect
Solutions (of 250
Tests per
Population Size)

Fig. 1, Average Generations to Convergence for 12-
bit Instance Size for Maximum Ones

As can be seen, the trend for accuracy increases as
the population increases. Also, the number of
generations to converge increases as the population
increases. We suspect the increase of generations to
convergence is probably due to the overall increase in
probability that a mutation will take place in the
population and in the increased time it takes for a
greater number of chromosomes to completely
converge. Given a population of 500 chromosomes,
on average, 5 chromosomes will have a mutation per
generation. Thus, more generations are needed to
discard these chromosomes to let the population
converge. This seems to explain the relationship
between population size and generations needed to
converge with large sets of populations.

Further, we noticed the number of generations to
convergence grows as a third order polynomial with
respect to the population size. In fact, this trend is
common among instance sizes of 4, 8, 12, and 16

bits. Although the number of generations to
convergence increases quickly with respect to
population size, the limit of incorrect solutions as the
population size goes to infinity appears to be 0 for all
instance sizes.

3.2 Sort
Although GA’s are more useful with difficult or
intractable problems, they can be designed to sort a
list of numbers. In the representation of sort, the
optimal solution is a string of binary numbers in
numerical order. For example, if the GA was
evolving to sort 5 numbers, the optimal solution
would be 001|010|011|100|101. To sort n numbers,
the chromosome length is the minimum binary
representation of n multiplied by n. Fitness is
determined by counting the number of correct bits
when compared to the predetermined optimal
solution.

We observed that the behavior of sort is similar to
that of Maximum 1's. For populations of 4 and 8,
regardless of instance size, convergence occurs
within 3 and 10 generations. The resulting accuracies
are equally similar. However, given a population and
instance size, sort converges in fewer generations and
has a higher rate of accuracy. For an instance size of
12 bits and a population of 300, maximum ones
converges after 20 generations with 91% accuracy
while sort converges in 11 generations with accuracy
> 99.5%.

Sort also exhibits a tradeoff between generations
to convergence and accuracy. For large populations,
the number of generations to convergence increases
without much increase in accuracy. See figure 2.
Although the number of incorrect solutions appears
to reach zero at a population size of 100, it is
reasonable to assume that the percentage of incorrect
solutions is always approaching zero from the
positive side, since GA’s are never guaranteed to
yield the optimal solution. This trend is consistent
with Maximum 1's.

The generations to convergence curve grows as a
third order polynomial similar to Maximum 1's,
although it grows at a slower rate as indicated by the
equations in figures 1 and 2. These equations are
derived from the best-fit curve of each graph. The
convergence trend is common among instance sizes
of 6, 12, 15, 18, and 32 bits for sort.

12-bit Sort Graph (1% Mutation)

y = 2E-07x3 - 7E-05x2 +
0.0154x + 7.9552

-10

0

10

20

30

40

50

0 200 400 600 800

Population Size

Average # of
Generations to
Convergence

of Incorrect
Solutions (of
250 Tests per
Population
Size)

Fig. 2, Average Generations to Convergence for 12-
bit Instance Size for Sort

3.3 Maximum Clique
Among the three problems introduced, Maximum
Clique represents the greatest challenge for
optimization. Unlike Sort and Maximum 1's, the
problem of Maximum Clique is inherently difficult to
solve for large instance sizes. In comparison, Sort
can be solved with an algorithm which takes O(n2)
time to execute. Maximum 1's is solvable with a
simple loop taking O(n) to converge. Both these
algorithms are guaranteed to yield the expected
results. In contrast, a conventional brute-force
implementation to solve Maximum Clique takes
exponential time with respect to the instance size.

The chromosome representation used is one bit
for each node of the input graph. So a chromosome
of 01110 would represent a potential solution of
nodes 1,2, and 3 (counting from the right beginning
with node 0). Each chromosome represents a
possible clique. The fitness assigned is equivalent to
the size of the clique that the chromosome represents,
if in fact it represents one. All chromosomes with a
single 1 are counted as cliques of 1 because a single
node is considered a clique.

Although several trends appeared common among
all three problems, the convergence landscape of
Maximum Clique differs from Maximum 1's and
Sort. The average number of generations to
convergence for small populations is large for
instance sizes of 12 and 16 nodes. However, the
behavior among the populations ranging from 4 to 12
for graphs of 12 and 16 nodes is interesting. For a
graph size of 12 nodes and a population of 4
chromosomes, the population takes an average of 84
generations to converge. However, with a population

of 8, the convergence time jumps to 600 generations.
After 8, an increase in population gradually decreases
the convergence times until a minimum is reached.
See figure 3. For a 16-node graph, this minimum
occurs at an approximate population size of 400,
taking 58 generations to converge.

16-Node Maximum Clique Graph
(1% Mutation)

0

50

100

150

200

-100 400 900
Population Size

Average # of
Generations to
Convergence

of Incorrect
Solutions (of
250 Tests per
Population
Size)

Fig. 3, Average generations to convergence for 16-bit
instance size for Maximum Clique.

This erratic jump of generations to convergence
seems due to a fundamental difference in the
maximum clique fitness function, since nothing else
is different among the three problems that would
affect convergence times.

Disregarding the large convergence times for
relatively small populations it is still difficult to
determine the best-fit curve, however it resembles a
quadratic. This quadratic resemblance is common
among instance sizes of 7, 8, 12, and 16 nodes. The
other trends such as percentage of correct solutions
and behavior for arbitrarily large population sizes
hold for all three problems.

4 Conclusions
After analyzing the preceding data, three conclusions
seem warranted. First, for arbitrarily large population
sizes the accuracy of the genetic algorithm
approaches, but does not reach, 100%. The greater
the population size the greater the chance that the
initial state of the population will contain a
chromosome representing the optimal solution.

 Second, the increase in population size causes the
number of generations to converge to increase. This
appears to be due to the overall increase in
probability that mutation will occur. If mutation
occurs for large population sizes, more generations
are needed to eliminate the mutated chromosomes.

Third, the optimal population for a given problem
implementation is the point in which the benefit of
low numbers of generations to convergence balances
with the benefit of increased accuracy as the
population size increases. This point is where the
average rate of change of the number of generations
to convergence is at a minimum. In other words, the
optimal solution is where the average slope is closest
to zero. In the case of the cubic graphs, this is the
point of inflection, when the curve ceases to be
concave down and becomes concave up or vice versa.
In the case of quadratics, it is the global minimum.
This is the crossover point in which the benefits of
accuracy and convergence time balance. In each
convergence graph, the average slope of the number
of incorrect solutions changes at this point. See
figure 3. Before the minimum at 400 the incorrect
solutions trend is nearly linear, but after 400, it
curves up as it approaches zero. Figures 1 and 2 also
show a similar relationship, although figure 2 is
slightly distorted because of the initial slope of the
incorrect solutions line.

When this optimal point is observed over varying
instance sizes, an interesting trend emerges. The
optimal population appears to grow logarithmically
with respect to the instance size for any of the three
problems. Since this trend is common among all
three dissimilar problems, it seems possible that all
GA applicable problems share this trend. Note that
these approximations, as on the previous graphs, are
generated using Microsoft Excel.

Consider the trend of the Maximum 1's problem.
See figure 4. Given the equation of the curve, the
optimal population size can be calculated as a
function of the instance size. For example, if we
wanted to determine the optimal population for an
instance size of 30, the solution would be 616. To
increase the accuracy in this approximation more data
points are needed in the graph.

Max Ones Minimum Rate of Change of Average
Generation to Convergence

y = 267.43Ln(x) - 293.21

0
100
200
300
400
500

0 5 10 15 20

Instance SizePo
pu

la
tio

n
at

 M
in

im
um

R

at
e

of
 C

ha
ng

e

Fig. 4, Optimal population trend for Maximum 1's.

The trend for Sort and Maximum Clique can be
generated and used in the same manner. Given a set
of optimal, or transitional points, generate the
function and use it to approximate the optimal
population for a given instance size.

The results of this research indicate that we may
have a general means for determining the optimal
population considering the advantages of both
convergence time and accuracy. This method seems
useful in practice because it selects the population
that optimizes the benefits of convergence time and
accuracy.
 Possible ideas for future work would be to
conduct the same experiment with other problems. It
may even be possible to group commonalties within
complexity classes. In other words, it might be
interesting to find out if all problems in P exhibit the
same characteristics as Sort. If so, it might be that
problems within the same complexity class exhibit
the same population characteristics. This would
provide value practical knowledge for the
implementation of any GA.

References:
[1] Holland, J., Adaptation in Natural and Artificial
 Systems, Ann Arbor, MI, University of Michigan
 Press, 1975.
[2]Rawlins, G.J.E. (1991). Introduction. Foundations
 of Genetic Algorithms, Morgan Kaufman. pp. 1-
 10.
[3] Goldberg, D.E. (1989b). Sizing Populations for
 Serial and Parallel Genetic Algorithms,
 Proceedings of the Third International Conference

 on Genetic Algorithms. San Mateo, CA: Morgan
 Kaufman. pp. 70-79

[4] Håstad, J. (1996). Clique is Indeed Hard ,Proc.on
 STOC, 1996.

[5] Rylander, B., Foster, J., GA-hard Problems,
 Proc. On Genetic and Evolutionary Computation
 Conference, 2000.

[6] Bovet, D., Crescenzi, P. Computational
 Complexity, Prentice Hall.1994.

