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Abstract: - We conduct experiments to determine the optimum population size for problems as the instance size 
varies.  We show that increasing the population size increases the accuracy of the GA.  Increasing population size 
also causes the number of generations to converge to increase.  The optimal population for a given problem is the 
point of inflection where the benefit of quick convergence is offset by increasing inaccuracy.  Finally, we propose 
a method that might be used for determining the optimum population size for a given problem instance.  This 
method holds for all three of the dissimilar problems that were used to conduct the experiment.  It seems possible 
that it may hold for all GA applicable problems. 
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1 Introduction 
The genetic algorithm (GA) is a method of 
computation that simulates biological evolution 
[1][2].  This method is typically used to optimize 
functions that are intractable or have large or 
unknown search spaces.  Despite years of successful 
application to a wide array of problems, little 
consensus has been generated concerning the 
optimum population size that should be used [3].  
The reasons are multiple but stem from a lack of 
recognition of the difference between problems and 
problem instances. 

Typically, a practitioner will try a range of 
population sizes before settling on a size that seems 
to work best with his problem instance.  Since 
problems and their instances vary greatly, so it would 
seem do the optimum population sizes. 

We need to carefully distinguish between a 
problem, and a problem instance.  We will usually 
refer to the latter simply as an “instance”.  A problem 
is a mapping from problem instances onto solutions.  
For example, consider the Maximum Clique (MC) 
problem, which is to find the largest complete 
subgraph H of a given graph G.  An instance of MC 
would be a particular graph G, whereas the problem 
MC is essentially the set of all pairs (G, H) where H 
is a maximal clique in G. 

The goal of our research is to determine the 
optimum population size for a GA as a function of 
the instance size.  As an example, consider the 
problem Sort (i.e. given an unsorted array of size n, 
return a sorted array).  We want to empirically 
determine the optimum population size (by optimum, 

we mean the size that causes the quickest 
convergence) for an instance of size n.  Then, see if 
this optimum holds as we increase the size of n.  We 
want to know if the optimum population size remains 
constant; remains a constant percentage of the search 
space; or if some other consistent characteristic 
arises. 
 
 
2 Test Parameters 
Our experiment was conducted using 50% elitism, 
single point crossover, and 1% mutation. For each 
problem we began with instances of size 4 and then 
increased size until the problem was untractable.  For 
each instance size we began with a population of 4 
chromosomes and then increased until a recognizable 
pattern emerged or the optimum population was 
determined.  We then collected data for each problem 
across all instance sizes to see if there was a pattern. 
To give the greatest insurance that our results were 
not problem specific we selected three dissimilar 
problems for conducting our research. 

The first problem is Maximum 1's. See definition 
1. 

 
 
Definition 1, Maximum 1's. 

 
Given: A string of length n. 
Find:   Maximum number of 1's that can be 

 in that string.  
 
 



This is probably the easiest known problem for a GA 
to solve.  For all but very large n, the GA converges 
in only a few generations. 

The next problem is Sort. See definition 2. 
 

 
Definition 2, Sort. 

 
Given:  An unsorted array of length n. 
Find:  The sorted array for some    
   predefined condition. 

 
 
This problem was selected because of its uniform 
familiarity and because it is a problem known to  be 
in P (i.e. the class of problems solvable in  polynomial 
time with a Turing Machine)[6]. 
 The last problem to be examined in our 
experiment is Maximum Clique (MC).  See definition 
3. 
 
 
 Definition 3, Maximum Clique. 
 
  Given:  A graph G. 
  Find:  The largest complete subgraph H in 
     G. 
  
 
This problem was chosen because it is a known NP-
Complete Hard problem (i.e. NP is the class of 
problems solvable in polynomial time with a 
Nondeterministic Turing Machine)[4][5].   

Given this range of very different problems we 
conjecture that any emerging population 
characteristics may hold for all problems that GAs 
can be successfully applied to. 
 

 
3 Results 
After conducting our experiments, we tabulated them 
on a per problem basis.  Later, we grouped the results 
as a whole to see if there were commonalties. 
 
 
3.1 Maximum 1's 
The first problem we examined was Maximum 1's.  
We observed the generations to convergence for 
populations of 4 and 8 is within 2 and 10 generations 
for all instance sizes tested.  We conjecture this quick 
convergence is due to the high probability that the 
initial state of a small population will find a sub 
optimal solution and converge to that solution.  Of 

the 250 tests per population, the percent of incorrect 
solutions remained above 98%.  Using an instance 
size of 12 bits and a population of 200, convergence 
occurs in an average of 20 generations.  However, 
this population size yields an average of 60 incorrect 
solutions out of 250.  The percentage of correct 
solutions appears to increase steadily as population 
size increases. 

Although accuracy increases with population size, 
there is a tradeoff with how many generations the 
population needs to converge.  With larger 
populations, the advantage of converging in a 
reasonable number of generations diminishes.  See 
figure 1. 

 
12-bit Maximum Ones Graph (1% Mutation)

y = 4E-07x3 - 0.0004x2 + 0.1168x 
+ 6.383
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Fig. 1,  Average Generations to Convergence for 12-
bit Instance Size for Maximum Ones 
 
 

As can be seen, the trend for accuracy increases as 
the population increases.  Also, the number of 
generations to converge increases as the population 
increases.  We suspect the increase of generations to 
convergence is probably due to the overall increase in 
probability that a mutation will take place in the 
population and in the increased time it takes for a 
greater number of chromosomes to completely 
converge.  Given a population of 500 chromosomes, 
on average, 5 chromosomes will have a mutation per 
generation.  Thus, more generations are needed to 
discard these chromosomes to let the population 
converge.  This seems to explain the relationship 
between population size and generations needed to 
converge with large sets of populations. 

Further, we noticed the number of generations to 
convergence grows as a third order polynomial with 
respect to the population size.  In fact, this trend is 
common among instance sizes of 4, 8, 12, and 16 



bits.  Although the number of generations to 
convergence increases quickly with respect to 
population size, the limit of incorrect solutions as the 
population size goes to infinity appears to be 0 for all 
instance sizes.  

 
 

3.2 Sort 
Although GA’s are more useful with difficult or 
intractable problems, they can be designed to sort a 
list of numbers.  In the representation of sort, the 
optimal solution is a string of binary numbers in 
numerical order.  For example, if the GA was 
evolving to sort 5 numbers, the optimal solution 
would be 001|010|011|100|101.  To sort n numbers, 
the chromosome length is the minimum binary 
representation of n multiplied by n.  Fitness is 
determined by counting the number of correct bits 
when compared to the predetermined optimal 
solution.  

We observed that the behavior of sort is similar to 
that of Maximum 1's.  For populations of 4 and 8, 
regardless of instance size, convergence occurs 
within 3 and 10 generations.  The resulting accuracies 
are equally similar. However, given a population and 
instance size, sort converges in fewer generations and 
has a higher rate of accuracy.  For an instance size of 
12 bits and a population of 300, maximum ones 
converges after 20 generations with 91% accuracy 
while sort converges in 11 generations with accuracy 
> 99.5%.  

Sort also exhibits a tradeoff between generations 
to convergence and accuracy.  For large populations, 
the number of generations to convergence increases 
without much increase in accuracy.  See figure 2.  
Although the number of incorrect solutions appears 
to reach zero at a population size of 100, it is 
reasonable to assume that the percentage of incorrect 
solutions is always approaching zero from the 
positive side, since GA’s are never guaranteed to 
yield the optimal solution.  This trend is consistent 
with Maximum 1's. 

The generations to convergence curve grows as a 
third order polynomial similar to Maximum 1's, 
although it grows at a slower rate as indicated by the 
equations in figures 1 and 2.  These equations are 
derived from the best-fit curve of each graph.  The 
convergence trend is common among instance sizes 
of 6, 12, 15, 18, and 32 bits for sort. 

 
 

12-bit Sort Graph (1% Mutation) 

y = 2E-07x3 - 7E-05x2 + 
0.0154x + 7.9552
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Fig. 2, Average Generations to Convergence for 12-
bit Instance Size for Sort 
 
 
3.3 Maximum Clique 
Among the three problems introduced, Maximum 
Clique represents the greatest challenge for 
optimization.  Unlike Sort and Maximum 1's, the 
problem of Maximum Clique is inherently difficult to 
solve for large instance sizes.  In comparison, Sort 
can be solved with an algorithm which takes O(n2) 
time to execute.  Maximum 1's is solvable with a 
simple loop taking O(n) to converge.  Both these 
algorithms are guaranteed to yield the expected 
results.  In contrast, a conventional brute-force 
implementation to solve Maximum Clique takes  
exponential time with respect to the instance size. 

The chromosome representation used is one bit 
for each node of the input graph.  So a chromosome 
of 01110 would represent a potential solution of 
nodes 1,2, and 3 (counting from the right beginning 
with node 0).  Each chromosome represents a 
possible clique.  The fitness assigned is equivalent to 
the size of the clique that the chromosome represents, 
if in fact it represents one.  All chromosomes with a 
single 1 are counted as cliques of 1 because a single 
node is considered a clique. 

Although several trends appeared common among 
all three problems, the convergence landscape of 
Maximum Clique differs from Maximum 1's and 
Sort.  The average number of generations to 
convergence for small populations is large for 
instance sizes of 12 and 16 nodes.  However, the 
behavior among the populations ranging from 4 to 12 
for graphs of 12 and 16 nodes is interesting. For a 
graph size of 12 nodes and a population of 4 
chromosomes, the population takes an average of 84 
generations to converge. However, with a population 



of 8, the convergence time jumps to 600 generations.  
After 8, an increase in population gradually decreases 
the convergence times until a minimum is reached. 
See figure 3.  For a 16-node graph, this minimum 
occurs at an approximate population size of 400, 
taking 58 generations to converge. 

 
 

16-Node Maximum Clique Graph
(1% Mutation)
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Fig. 3, Average generations to convergence for 16-bit 
instance size for Maximum Clique. 

 
 

This erratic jump of generations to convergence 
seems due to a fundamental difference in the 
maximum clique fitness function, since nothing else 
is different among the three problems that would 
affect convergence times. 

Disregarding the large convergence times for 
relatively small populations it is still difficult to 
determine the best-fit curve, however it resembles a 
quadratic.  This quadratic resemblance is common 
among instance sizes of 7, 8, 12, and 16 nodes. The 
other trends such as percentage of correct solutions 
and behavior for arbitrarily large population sizes 
hold for all three problems. 
 
 
4 Conclusions 
After analyzing the preceding data, three conclusions 
seem warranted.  First, for arbitrarily large population 
sizes the accuracy of the genetic algorithm 
approaches, but does not reach, 100%.  The greater 
the population size the greater the chance that the 
initial state of the population will contain a 
chromosome representing the optimal solution. 

      

 Second, the increase in population size causes the 
number of generations to converge to increase.  This 
appears to be due to the overall increase in 
probability that mutation will occur.  If mutation 
occurs for large population sizes, more generations 
are needed to eliminate the mutated chromosomes.  

Third, the optimal population for a given problem 
implementation is the point in which the benefit of 
low numbers of generations to convergence balances 
with the benefit of increased accuracy as the 
population size increases.  This point is where the 
average rate of change of the number of generations 
to convergence is at a minimum.  In other words, the 
optimal solution is where the average slope is closest 
to zero.  In the case of the cubic graphs, this is the 
point of inflection, when the curve ceases to be 
concave down and becomes concave up or vice versa.  
In the case of quadratics, it is the global minimum.  
This is the crossover point in which the benefits of 
accuracy and convergence time balance.  In each 
convergence graph, the average slope of the number 
of incorrect solutions changes at this point.  See 
figure 3.  Before the minimum at 400 the incorrect 
solutions trend is nearly linear, but after 400, it 
curves up as it approaches zero.  Figures 1 and 2 also 
show a similar relationship, although figure 2 is 
slightly distorted because of the initial slope of the 
incorrect solutions line. 

When this optimal point is observed over varying 
instance sizes, an interesting trend emerges.  The 
optimal population appears to grow logarithmically 
with respect to the instance size for any of the three 
problems.  Since this trend is common among all 
three dissimilar problems, it seems possible that all 
GA applicable problems share this trend.  Note that 
these approximations, as on the previous graphs, are 
generated using Microsoft Excel. 

Consider the trend of the Maximum 1's problem.  
See figure 4.  Given the equation of the curve, the 
optimal population size can be calculated as a 
function of the instance size.  For example, if we 
wanted to determine the optimal population for an 
instance size of 30, the solution would be 616.  To 
increase the accuracy in this approximation more data 
points are needed in the graph. 

 



Max Ones Minimum Rate of Change of Average 
Generation to Convergence

y = 267.43Ln(x) - 293.21
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Fig. 4, Optimal population trend for Maximum 1's. 
 
 
The trend for Sort and Maximum Clique can be 
generated and used in the same manner.  Given a set 
of optimal, or transitional points, generate the 
function and use it to approximate the optimal 
population for a given instance size. 

The results of this research indicate that we may 
have a general means for determining the optimal 
population considering the advantages of both 
convergence time and accuracy.  This method seems 
useful in practice because it selects the population 
that optimizes the benefits of convergence time and 
accuracy.   
 Possible ideas for future work would be to 
conduct the same experiment with other problems.  It 
may even be possible to group commonalties within 
complexity classes.  In other words, it might be 
interesting to find out if all problems in P exhibit the 
same characteristics as Sort.  If so, it might be that 
problems within the same complexity class exhibit 
the same population characteristics.  This would 
provide value practical knowledge for the 
implementation of any GA. 
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