
Divide and Conquer in Genetic Algorithms:
Generating Paths on Heightfields

RYAN MYERS BART RYLANDER

School of Engineering School of Engineering
University of Portland University of Portland
 Portland, Or 97203 Portland, Or 97203

 U.S.A. U.S.A.

Abstract: - We demonstrate a genetic algorithm (GA) to evolve an efficient path between points in a 3D landscape
for a personal computer (PC) strategy game. The GA produces paths preferable to the current state of the practice
in game design (most games use a variant of memory-constrained A*). We then compare the fitness of a large
genotype that optimizes the complete path between points in the landscape to a strategy of a small genotype that
uses the GA to generate a sequence of subpaths between the two endpoints. Surprisingly, the divide-and-conquer
method statistically produces better paths than the larger genotype. Unfortunately, this is offset by an increased
execution time that is considerably larger for the divide-and-conquer approach.

Key-Words: - Genetic Algorithm, Path Algorithms, Game Search

1 Introduction
A common structure in many PC game environments
is the heightfield, a finite two-dimensional (2D) array
of heights, forming a uniform sampling of a three-
dimensional (3D) landscape. Often, games and other
applications of heightfields involve moving from one
point to another in the most efficient way possible.
To reproduce the 2D surface in 3D, a programmer
needs only interpolate between the sampling points to
get vertices of the surface, and recalculate normal
vectors. Since this method is straightforward to
program and consumes little space, it’s the most
common method of storing both real-life landscapes
(GSPS elevation maps) and virtual environments. In
most cases, heightfields are stored on disk as a 2D
full color image, where the luminance of each pixel
(scaled to the range 0.0 – 1.0 inclusive) represents the
elevation of the landscape.

A common task in many applications of
heightfields is plotting a path for an object to move
through - for example, a helicopter along a mountain
valley, or moving a tank in a war game. However,
traditional pathfinding techniques don’t lend
themselves well to heightfields – the current state of
the practice (SOTP) for PC war strategy games is
Ensemble Studios’ Age of Empires 2, which uses a
form of memory-limited A* with very minimal use of
the height element of the board. This means that
movement tends to move in the most direct way,
rather than the most “natural”. For example, if you
direct a unit to cross a ravine, the memory-limited A*
method will cause this unit to rappel down the wall

and climb up the other side, even if a bridge crosses
the ravine just 50 yards to the north.

A procedural approach to the task of path
calculation is infeasible due to the enormous search
space. Despite this, it’s fairly straightforward to
quantify what makes a path desirable. Given these
characteristics, it seemed that applying evolutionary
programming techniques, and genetic algorithms in
particular, might be helpful.

2 Fitness Function: Quantifying Goals
In order to create a divide-and-conquer technique
within the GA, we need to ensure an even dis-
tribution of waypoints along the path. This is fairly
trivial to implement. Figure 1 presents a depiction of
a high quality path for this goal.

Fig. 1, High quality path.

In contrast, a path with waypoints poorly
distributed would not present a suitable
representation of a divide-and-conquer technique.
Figure 2 depicts a poor quality path.

Fig.2, Poor quality path.

Even distribution of waypoints is not the only
criteria for a good path. We must also select a path
that avoids obstructions. For example, if we know
that an enemy city is between the beginning and end
points of the path that our unit must take, the most
desirable path is one that avoids the enemy by
curving around it. See figure 3.

Fig. 3, A path that avoids the enemy.

The other major objective is to minimize unnecessary
movement. The first part is to minimize 2D
movement. See figures 4 and 5.

Fig. 4, Preferable solution minimizing 2D movement.

Fig. 5, Poor solution with wasteful 2D movement.

A more important priority in this objective,
however, is to minimize elevation changes. Paths that
look excellent from a 2D perspective may in fact be
very poor choices when considering the players
(usually simulated humans) that actually must take
the path. Dramatic changes in elevation may offset
any advantage in saved distance because of the
increase in energy expenditure. See figures 6 and 7
for depictions.

Fig. 6, A good path that avoids a valley.

Fig. 7, A poor path that ignores the valley.

Because of the way fitness functions combine, we

can write each one of these objectives as an
independent function and combine them as a
weighted average later.

3 Implementation
The phenotype is a series of unsigned integers split
into (x,y) pairs on the 2D heightfield. The decoder
simply moves from left to right evaluating 8-bit
pieces of the bit string as normal binary integers.
This maintains heredity, and does fairly well on
locality, although you can still create large changes
on a per-node basis if you flip the bits.

Initial testing was done with a population of 500
chromosomes. One percent mutation was used. The
crossover function is a fairly straightforward random
splice of the parents’ genotypes. The parent selection
was written to favor the smallest fitness found – the

fitness functions measure deviance from goals, rather
than grading them on a set scale. In this case, having
no upper bound for the fitness did not affect the
algorithm’s performance. A weighted average was
achieved by balancing it against the average of the
last average fitness and the last maximum fitness.

While building the algorithm, another issue that
came into play was the idea of divide-and-conquer –
in PC gaming. Memory-constrained A* is typically
used to generate a small number of waypoints (eight
seems to be used most often) and then ran a second
time to generate two sub-waypoints between each
waypoint. In view of this, we also extended the
software to include a mode in which the GA was
used multiple times – first to generate four or five
waypoints, and then to generate four sub-waypoints
for each link in the path. Although total operating
time is longer than for a single large genotype, if
each segment is subdivided only when the
unit/character is walking in game-time, it would be
more efficient than generating the entire path in one
pass with the large genotype.

4 Conclusions
In general, both the large genotype GA and the
divide-and-conquer GA perform very well, especially
when compared to the current state of the practice.
For the final testing, a freeware fractal-based terrain
generator was used to generate 1000 random
landscapes, and each landscape was used as input to a
population of 2048 64-bit chromosomes. The
population was evolved until the difference between
the population’s average fitness and minimum was
smaller than a given epsilon (we used 0.001). On the
1000 random landscapes, the mean convergence is
49.8 generations, with a median of 62 generations.

To provide an example, the terrain below was
randomly generated, no enemy groups were placed
upon it, and the algorithm was asked to plot an
optimal course from one corner to the other (from
(16, 16) to (240, 240)). See figures 8 and 9.

Fig. 8, Random generation of terrain.

Fig. 9, Rendered terrain with selected path.

As the screenshot demonstrates, the algorithm’s

path automatically finds the lowest points to cross
ridges and peaks in the landscape, and skirts around
the two rightmost hills.

Regarding the divide and conquer approach,
contrary to intuition, divide-and-conquer produces
better paths than using a single large genotype. On
average, using the 1000 generated landscapes, the
fitness of a 16-point divide-and-conquer path
(produced by generating four points with a 64-bit
genotype and then generating four more points for
each link) was 78% of the fitness of a 16-point path
for the same landscape generated by a single 256-bit
genotype. (Remember that in this experiment, lower
fitnesses represent better solutions.) However,

despite this advantage the visual difference is
comparatively little, and the execution time for the
divide-and-conquer approach is considerably larger.

References:
[1] Rylander, B., Foster, J., GA-hard Problems, Proc.
 On Genetic and Evolutionary Computation
 Conference, 2000.
[2] Holland, J., Adaptation in Natural and Artificial
 Systems, Ann Arbor, MI, University of Michigan
 Press, 1975.
[3] S. Russell and P. Norvig. Artificial
 Intelligence, A Modern Approach. Prentice Hall,
 1995.

