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Abstract: - We demonstrate a genetic algorithm (GA) to evolve an efficient path between points in a 3D landscape 
for a personal computer (PC) strategy game. The GA produces paths preferable to the current state of the practice 
in game design (most games use a variant of memory-constrained A*).  We then compare the fitness of a large 
genotype that optimizes the complete path between points in the landscape to a strategy of a small genotype that 
uses the GA to generate a sequence of subpaths between the two endpoints.  Surprisingly, the divide-and-conquer 
method statistically produces better paths than the larger genotype.  Unfortunately, this is offset by an increased 
execution time that is considerably larger for the divide-and-conquer approach.   
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1 Introduction 
A common structure in many PC game environments 
is the heightfield, a finite two-dimensional (2D) array 
of heights, forming a uniform sampling of a three-
dimensional (3D) landscape.  Often, games and other 
applications of heightfields involve moving from one 
point to another in the most efficient way possible.  
To reproduce the 2D surface in 3D, a programmer 
needs only interpolate between the sampling points to 
get vertices of the surface, and recalculate normal 
vectors.  Since this method is straightforward to 
program and consumes little space, it’s the most 
common method of storing both real-life landscapes 
(GSPS elevation maps) and virtual environments.  In 
most cases, heightfields are stored on disk as a 2D 
full color image, where the luminance of each pixel 
(scaled to the range 0.0 – 1.0 inclusive) represents the 
elevation of the landscape. 

A common task in many applications of 
heightfields is plotting a path for an object to move 
through - for example, a helicopter along a mountain 
valley, or moving a tank in a war game.  However, 
traditional pathfinding techniques don’t lend 
themselves well to heightfields – the current state of 
the practice (SOTP) for PC war strategy games is 
Ensemble Studios’ Age of Empires 2, which uses a 
form of memory-limited A* with very minimal use of 
the height element of the board.  This means that 
movement tends to move in the most direct way, 
rather than the most “natural”.  For example, if you 
direct a unit to cross a ravine, the memory-limited A* 
method will cause this unit to rappel down the wall 

and climb up the other side, even if a bridge crosses 
the ravine just 50 yards to the north. 

A procedural approach to the task of path 
calculation is infeasible due to the enormous search 
space.  Despite this, it’s fairly straightforward to 
quantify what makes a path desirable.  Given these 
characteristics, it seemed that applying evolutionary 
programming techniques, and genetic algorithms in 
particular, might be helpful. 
 
 
2 Fitness Function: Quantifying Goals 
In order to create a divide-and-conquer technique 
within  the GA,  we   need to  ensure an even  dis-
tribution of waypoints along the path.  This is fairly 
trivial to implement.  Figure 1 presents a depiction of 
a high quality path for this goal.  
 

        
 
Fig. 1,  High quality path.  



In contrast, a path with waypoints poorly 
distributed would not present a suitable 
representation of a divide-and-conquer technique.  
Figure 2 depicts a poor quality path. 
 

         
 
 
Fig.2,  Poor quality path. 
 
 

Even distribution of waypoints is not the only 
criteria for a good path.  We must also select a path 
that avoids obstructions.  For example, if we know 
that an enemy city is between the beginning and end 
points of the path that our unit must take, the most 
desirable path is one that avoids the enemy by 
curving around it.  See figure 3. 
  
 
 

        
 
 
Fig. 3, A path that avoids the enemy. 
 
 
 
 

The other major objective is to minimize unnecessary 
movement.  The first part is to minimize 2D 
movement. See figures 4 and 5. 
 
 

         
 
 
Fig. 4, Preferable solution minimizing 2D movement. 
 
 
 

            
 
Fig. 5, Poor solution with wasteful 2D movement. 
 
 

A more important priority in this objective, 
however, is to minimize elevation changes. Paths that 
look excellent from a 2D perspective may in fact be 
very poor choices when considering the players 
(usually simulated humans) that actually must take 
the path.  Dramatic changes in elevation may offset 
any advantage in saved distance because of the 
increase in energy expenditure.  See figures 6 and 7 
for depictions. 
 



     
 
 
Fig. 6, A good path that avoids a valley. 
 
 

    
  
 
Fig. 7, A poor path that ignores the valley. 

 
 
Because of the way fitness functions combine, we 

can write each one of these objectives as an 
independent function and combine them as a 
weighted average later. 
 
 
3 Implementation 
The phenotype is a series of unsigned integers split 
into (x,y) pairs on the 2D heightfield.  The decoder 
simply moves from left to right evaluating 8-bit 
pieces of the bit string as normal binary integers.  
This maintains heredity, and does fairly well on 
locality, although you can still create large changes 
on a per-node basis if you flip the bits. 

Initial testing was done with a population of 500 
chromosomes.  One percent mutation was used. The 
crossover function is a fairly straightforward random 
splice of the parents’ genotypes.  The parent selection 
was written to favor the smallest fitness found – the 

fitness functions measure deviance from goals, rather 
than grading them on a set scale.  In this case, having 
no upper bound for the fitness did not affect the 
algorithm’s performance. A weighted average was 
achieved by balancing it against the average of the 
last average fitness and the last maximum fitness.  

While building the algorithm, another issue that 
came into play was the idea of divide-and-conquer – 
in PC gaming.  Memory-constrained A* is typically 
used to generate a small number of waypoints (eight 
seems to be used most often) and then ran a second 
time to generate two sub-waypoints between each 
waypoint.  In view of this, we also extended the 
software to include a mode in which the GA was 
used multiple times – first to generate four or five 
waypoints, and then to generate four sub-waypoints 
for each link in the path. Although total operating 
time is longer than for a single large genotype, if 
each segment is subdivided only when the 
unit/character is walking in game-time, it would be 
more efficient than generating the entire path in one 
pass with the large genotype. 
 
 
4 Conclusions 
In general, both the large genotype GA and the 
divide-and-conquer GA perform very well, especially 
when compared to the current state of the practice.  
For the final testing, a freeware fractal-based terrain 
generator was used to generate 1000 random 
landscapes, and each landscape was used as input to a 
population of 2048 64-bit chromosomes.  The 
population was evolved until the difference between 
the population’s average fitness and minimum was 
smaller than a given epsilon (we used 0.001).   On the 
1000 random landscapes, the mean convergence is 
49.8 generations, with a median of 62 generations. 

 
To provide an example, the terrain below was 
randomly generated, no enemy groups were placed 
upon it, and the algorithm was asked to plot an 
optimal course from one corner to the other (from 
(16, 16) to (240, 240)). See figures 8 and 9. 
 
 



 
 

Fig. 8, Random generation of terrain. 
 
 
 

 
 
Fig. 9, Rendered terrain with selected path. 

 
As the screenshot demonstrates, the algorithm’s 

path automatically finds the lowest points to cross 
ridges and peaks in the landscape, and skirts around 
the two rightmost hills. 

Regarding the divide and conquer approach, 
contrary to intuition, divide-and-conquer produces 
better paths than using a single large genotype.  On 
average, using the 1000 generated landscapes, the 
fitness of a 16-point divide-and-conquer path 
(produced by generating four points with a 64-bit 
genotype and then generating four more points for 
each link) was 78% of the fitness of a 16-point path 
for the same landscape generated by a single 256-bit 
genotype.  (Remember that in this experiment, lower 
fitnesses represent better solutions.)  However, 

despite this advantage the visual difference is 
comparatively little, and the execution time for the 
divide-and-conquer approach is considerably larger. 
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