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Abstract
In this paper, an experimental study of practical realization to transmit binary signals using chaos is pre-
sented. In particular, we use a Generalized Hamiltonian systems approach to synchronize two unidirectionally
coupled Lorenz circuits. Experimental results are in close accordance with the simulations.
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1 Introduction
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Since Pecora and Carroll reported the discovery
of synchronized chaos in [Pecora & Carroll, 1990],
the possibility of secure communications using chaos
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has received considerable attention. Synchroniza-
tion of chaotic systems has in recent years become
an area of active research. Di¤erent approaches are
proposed and being pursued (see, e.g., [Chua et al.,
1992; Kocarev et al., 1992; Ogorzalek, 1993; Wu &
Chua, 1993; Ding & Ott, 1994; Feldmann, et al.,
1996; Nijmeijer & Mareels, 1997; Special Issue, 1997,
2000; Cruz & Nijmeijer, 2000; Sira-Ramírez & Cruz,
2000; 2001; Pikovsky et al., 2001] and the references
therein).
Data encryption using chaotic dynamics was re-

ported in the early 1990’s as a new approach for signal
encoding that di¤ers from the conventional methods
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that use numerical algorithms as the encryption key.
Thereby, the synchronization of chaotic systems plays
an important role in chaotic communications. In par-
ticular, several techniques, such as chaotic masking
[Cuomo et al., 1993], chaotic switching [Parlitz et al.,
1992; Cuomo et al., 1993; Dedieu et al., 1993] and
chaotic parameter modulation [Yang & Chua, 1996]
have been developed.
Our objective in this paper consists in describ-

ing an experimental study of practical realization
to transmit binary signals based on synchronized
chaotic systems. In particular, we use a Generalized
Hamiltonian systems approach developed in [Sira-
Ramírez & Cruz, 2000; 2001] to synchronize two uni-
directionally coupled Lorenz circuits. We enumerate
several advantages over the existing methods:

² it enables synchronization be achieved in a system-
atic way and clari…es the issue of deciding on the
nature of the output signal to be transmitted;

² it can be successfully applied to several well-known
chaotic oscillators;

² it does not require the computation of any Lya-
punov exponent;

² it does not require initial conditions belonging to
the same basin of attraction.

This paper is organized as follow. In Section 2,
we present the system description to transmit bi-
nary information by chaotic switching. In Section
3, we obtain the synchronization of two Lorenz sys-
tems through a Generalized Hamiltonian systems ap-
proach. In Section 4, we present the stability analy-
sis related to the synchronization process. In Section
5, we show the physical system implementation and
experimental results: 5.1 synchronization and 5.2 bi-
nary communication. Finally, in Section 6, we give
some concluding remarks.

2 System description
In this section, we describe the communication sys-
tem based on synchronized chaos and its operating
principles. Figure 1 shows a block diagram to trans-
mit binary messages by chaotic switc We will use the
Lorenz system as chaos generator. The state equa-
tions are given by [Lorenz, 1963]

_x1 = ¾ (x2 ¡ x1) ; (1)

_x2 = rx1 ¡ x2 ¡ x1x3;
_x3 = x1x2 ¡ bx3;

with ¾ = 10, r = 28, and b = 8=3 the Lorenz system
exhibits chaotic behavior.
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Figure 1: Block diagram to transmit binary messages
by chaotic switching.

For communication purposes here we apply the
Hamiltonian synchronization of Lorenz circuits to
chaotic switching. In this technique, the message
m (t) is supposed to be a binary message, and is used
to modulate one or more parameters of the (switch-
ing) transmitter, i.e. m (t) controls a switch whose
action changes the parameter values of the transmit-
ter. Thus, according to the value ofm (t) at any given
time t, the transmitter has either the parameter set
value p or the parameter set value p0. At the re-
ceiver, m (t) is decoded by using the synchronization
error to decide whether the received message corre-
sponds to one parameter value, or the other (it can
be interpreted as an one or zero). In the next section
we describe the Generalized Hamiltonian systems ap-
proach to synchronize two unidirectionally coupled
Lorenz circuits. Synchronization is thus between the
transmitter and the dynamics with the receiver being
given by an observer.

3 Synchronization of Lorenz
system

Consider the following n-dimensional autonomous
system

_x = f (x) ; x 2 Rn; (2)

which represents a circuit exhibiting a chaotic be-
havior. Following the approach provided in [Sira-
Ramírez & Cruz, 2001], many physical systems de-
scribed by Eq. (2) can be written in the following
“Generalized Hamiltonian” Canonical form,

_x = J (x)@H
@x

+ S (x) @H
@x

+F(x); (3)

where H (x) denotes a smooth energy function which
is globally positive de…nite in Rn. The column gra-
dient vector of H, denoted by @H=@x, is assumed to
exist everywhere. We frequently use quadratic en-
ergy function H (x) = 1=2 xTMx with M being a,
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constant, symmetric positive de…nite matrix. In such
case, @H=@x =Mx. The square matrices, J (x) and
S (x) satisfy, for all x 2 Rn, the following properties,
which clearly depict the energy managing structure
of the system, J (x)+J T (x) = 0 and S (x) = ST (x).
The vector …eld J (x) @H=@x exhibits the conserva-
tive part of the system and it is also referred to as the
workless part, or work-less forces of the system; and
S (x) depicting the working or nonconservative part
of the system. For certain systems, S (x) is negative
de…nite or negative semide…nite. In such cases, the
vector …eld is addressed to as the dissipative part of
the system. If, on the other hand, S (x) is positive
de…nite, positive semide…nite, or inde…nite, it clearly
represents, respectively, the global, semi-global and
local destabilizing part of the system. In the last case,
we can always (although nonuniquely) descompose
such an inde…nite symmetric matrix into the sum of
a symmetric negative semide…nite matrix R (x) and
a symmetric positive semide…nite matrix N (x). And
where F(x) represents a locally destabilizing vector
…eld.
We consider a special class of Generalized Hamilto-

nian systems with destabilizing vector …eld and linear
output map , y, given by

_x = J (y)@H
@x

+ (I + S) @H
@x

+F(y); x 2 Rn;

y = C @H
@x
; y 2 Rm; (4)

where S is a constant symmetric matrix, not neces-
sarily of de…nite sign. The matrix I is a constant
skew symmetric matrix. The vector variable y is re-
ferred to as the system output. The matrix C is a
constant matrix.
We denote the estimate of the state vector x by »,

and consider the Hamiltonian energy function H(»)
to be the particularization of H in terms of ». Simi-
larly, we denote by ´ the estimated output, computed
in terms of the estimated state ». The gradient vector
@H(»)=@» is, naturally, of the formM».
A dynamic nonlinear state observer for the system

(4) is readily obtained as

_» = J (y)@H
@»

+ (I + S) @H
@»

+F(y) +K(y ¡ ´);

´ = C @H
@»
; (5)

where K is a constant vector, known as the observer
gain.
The state estimation error, de…ned as e = x¡» and

the output estimation error, de…ned as ey = y ¡ ´,
are governed by

_e = J (y)@H
@e

+ (I + S ¡KC) @H
@e
; e 2 Rn;

ey = C @H
@e
; ey 2 Rm; (6)

where the vector, @H=@e actually stands, with some
abuse of notation, for the gradient vector of the modi-
…ed energy function, @H(e)=@e = @H=@x¡@H=@» =
M(x ¡ ») = Me. Below, we set, when needed,
I+S =W. We say that the receiver system (5) syn-
chronizes with the transmitter system (4), if e (t)! 0
as t!1.
Lorenz system. To synchronize the Lorenz cir-

cuit using the Generalized Hamiltonian systems ap-
proach we the Eq. (1). The set of state equations
describing Lorenz system in Hamiltonian Canonical
form with a destabilizing …eld (master) is given by

24 _x1
_x2
_x3

35 =

24 0 1
2¾ 0

¡1
2¾ 0 ¡x1
0 x1 0

35 @H
@x

(7)

+

24 ¡¾2 1
2¾ 0

1
2¾ ¡1 0
0 0 ¡b

35 @H
@x

+

24 0
rx1
0

35 ;
taking as the Hamiltonian energy function the scalar
function

H (x) =
1

2

·
1

¾
x21 + x

2
2 + x

2
3

¸
: (8)

The destabilizing vector …eld evidently calls for y =
x1 =

£
¾ 0 0

¤
@H=@x to be used as the output

of the master (7). The matrices C, S and I, are given
by

C =
£
¾ 0 0

¤
; S =

24 ¡¾2 1
2¾ 0

1
2¾ ¡1 0
0 0 ¡b

35 ;
I =

24 0 1
2¾ 0

¡1
2¾ 0 0
0 0 0

35 :
The pair of matrices (C;S) already constitutes a pair
of detectable, but nonobservable, matrices. Even
though the addition of the matrix I to S does not
improve the lack of observability, the pair (C;W) =
(C;S + I) remains, nevertheless, detectable. In this
case, the dissipative structure of the system is fully
“damped” due to the negative de…niteness of the ma-
trix S. Then, there is no need for an output estima-
tion error injection for complementing, or enhancing,
the system’s natural dissipative structure. The slave
is designed as24 _»1

_»2
_»3

35 =

24 0 1
2¾ 0

¡1
2¾ 0 ¡x1
0 x1 0

35 @H
@»
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+

24 ¡¾2 1
2¾ 0

1
2¾ ¡1 0
0 0 ¡b

35 @H
@»

(9)

+

24 0
rx1
0

35 ;
and the synchronization error is therefore governed
by the globally asymptotically stable system24 _e1

_e2
_e3

35 =

24 0 1
2¾ 0

¡1
2¾ 0 ¡x1
0 x1 0

35 @H
@e

+

24 ¡¾2 1
2¾ 0

1
2¾ ¡1 0
0 0 ¡b

35 @H
@e
:

If the negative real part of the observable eigenvalues,
related to the constant dissipation structure matrix
of the error dynamics, must be enhanced, one can still
use the above observer but now including an output
reconstruction error injection term. The resulting ob-
server (slave) is given by

24 _»1
_»2
_»3

35 =

24 0 1
2¾ 0

¡1
2¾ 0 ¡y
0 y 0

35 @H
@»

+

24 ¡¾2 1
2¾ 0

1
2¾ ¡1 0
0 0 ¡b

35 @H
@»

(10)

+

24 0
ry
0

35+
24 K1
K2
K3

35 e1:
The asymptotically stable reconstruction error dy-
namics is then governed by

24 _e1_e2
_e3

35=
24 0 1

2¾(1 +K2)
1
2¾K3¡1

2¾(1 +K2)
1
2¾K3 ¡y

¡1
2¾K3 y 0

35@H
@e

(11)

+

24¡¾(¾ +K1) 1
2¾(1¡K2) ¡1

2¾K3
1
2¾(1¡K2) ¡1 0
¡1
2¾K3 0 ¡b

35@H
@e
:

One may now specify the values of ki, i = 1; 2; 3 in
order to guarantee a faster asymptotic stability to
zero of the state reconstruction error trajectories.

4 Synchronization stability
analysis

In this section, we examine the stability of the syn-
chronization error (11) between the Lorenz system (7)

and observer (10). A necessary and su¢cient con-
dition for global asymptotic stability to zero of the
estimation error is given by the following theorem.

Theorem 1 (Sira-Ramírez and Cruz, 2001)
The state x of the nonlinear system (7) can be
globally, exponentially, asymptotically estimeted, by
the state » of the observer (10) if and only if there
exists a constant matrix K such that the symmetric
matrix

[W ¡KC] + [W ¡KC]T = [S ¡KC] + [S ¡KC]T

= 2

·
S¡1

2

¡
KC+CTKT

¢̧
is negative de…nite.

5 Physical system implementa-
tion and experimental results

In this section, we describe the physical implemen-
tation of the synchronization and communication
schemes. Figure 2 shows the analog circuit imple-
mentation of the Lorenz equations (7)
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Figure 2: Analog circuit implementation of the
Lorenz system.

5.1 Synchronization

The experimental set-up of Generalized Hamiltonian
systems approach to synchronize the Lorenz circuits
is shown in Figure (3). The basic idea of this scheme
is as follows: a voltage §15 V dc: is injected into the
Lorenz circuit (transmitting system) which modi…es
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the voltage x1. This voltage x1 is then used as driv-
ing signal on the Lorenz circuit (receiving system)
across I:C: AD734. The signal error e1 = x1 ¡ »1;
is injected into the block of U8. The choice of gains
k1 = 50 and k2 = k3 = 0 was used. Figure 4 shows
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Figure 3: Experimental set-up of Generalized Hamil-
tonian systems approach to synchronize the Lorenz
circuit.

the quality of synchronization between the transmit-
ter and receiver. The horizontal axis corresponds to
x1 of the transmitter and the vertical axis to »1 of
the receiver.

Figure 4: Synchronization between the master and
slave: x1 of the master versus »1 of the slave.

5.2 Binary communication

The experimental set-up to transmit binary signals
by chaotic switching is shown in Figure 5. The ba-
sic idea of this scheme is as follows: We generate two
chaotic attractors of the Lorenz circuit (Eq. (1)), uti-
lizing a square signal of 7 V dc: and 3 V dc:With these
values, the Lorenz circuit exhibits two di¤erent but
qualitatively similar chaotic attractors (to encoding
\1" or \0" ). The Figure 6 shows the transmission of

+15 V

U1 U3
U2

-

+

5.9 K
R1

5.9 K
R2

5.9 K
R3

5.9 K
R9

1M
R4

100 K
XR2

10 K
R10

0.1 UF
C1

GND

GND

GND

+

+

-

-

+15 V

-15 V

+15 V

-15 V

+15 V

U5
U4

10 K
R10

0.1 UF
C2

GND

GND

10 M
R6

1 M
XR1

-

-

+

+

-15 V

+15 V

+15 V

+15 V

+15 V

-15 V

180 K
R12

620 K
R11

100 K
XR3

AD734
1 M
R7

GND

U7
U6

10 K
R16

0.1 UF
C3

GND

GND

3M
R8

1 M
XR8

-

-

+

+

-15 V

+15 V

+15 V

+15 V

-15 V

82 K
R15

270 K
R14

50 K
XR7

AD734
1 M
R7

GND

14 13

11

8
12

1

2

10

6

7

9 3

4

1

2

10

6

7

14 13

4

39

11

8
12

p

1x

2x

3x

m essage
m (t)

Transmitted
signal

Figure 5: Experimental set-up to transmit binary sig-
nals by chaotic switching.

an alternating sequence of “1” and “0” (transmitted
signal x1). The Figure 7, top of …gure: shows binary

Figure 6: Transmitted signal x1.

signal to be transmitted. Bottom of …gure shows the
original information is recovered by synchronization
error detection at the receiver.

6 Concluding remarks
In this paper, we have developed an experimental
study of practical realization to transmit binary sig-
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Figure 7: Top of …gure: Binary signal to be trans-
mitted. Bottom of …gure: Synchronization error de-
tection e1 = x1 ¡ »1 .

nals using synchronized chaos. Synchronization of
two Lorenz circuits was obtained from the perspective
of Generalized Hamiltonian systems including dissi-
pation and destabilizing terms. The approach allows
to give a simple design procedure for the receiver sys-
tem and clari…es the issue of deciding on the nature of
the output signal to be transmitted. We have shown
that the experimental results are in close accordance
with the simulations.
In a forthcoming article we will be concerned with

a physical implementation of the method combining
with conventional cryptographic schemes to enhance
the security of low-dimensional chaos-based secure
communication systems.
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