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Abstract: - In this paper, a three-dimensional nonlinear the Poisson-Boltzmann equation is solved numerically
with parallel finite volume (FV) and monotone iterative (MI) methods. The proposed computational technique
has been successfully implemented on a PC-based Linux-cluster with the message passing interface library. First
of all, the Poisson-Boltzmann equation is discretized with the FV method. It leads to a system of nonlinear
algebraic equations and is directly solved with a global convergent MI algorithm. Based on the strong nonlinear
property of the Poisson-Boltzmann equation, our proposed new iterative method does not require accurate initial
guess to start the solution procedure and it converges monotonically. This appearing property makes the method
is easily implemented on a parallel computing with very good performance. The developed parallel nonlinear
Poisson-Boltzmann solver has been tested on a variety of structure problems to show its robustness. Achieved
parallel speedup and efficiency are also reported to demonstrate the excellent parallel performance of the
method.
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1  Introduction

In biology, physics, and chemistry communities, the
electrostatic properties and distribution for material,
structures, binding phenomena, complex molecules,
and proteins have been of great interests and studies in
recent years. Modeling and simulation for these
interactions play an important role especially in
biophysics. Just like various semiconductor device
models, such as drift diffusion, hydrodynamic and
Boltzmann transport equations require to solve the
multi-dimensional Poisson equation for the potential
distribution [1-8]; a three-dimensional linear or
nonlinear Poisson-Boltzmann equation should be
solved numerically for the behavior of electrostatic
potential in molecular biophysics [9-19].

In this paper, a 3D nonlinear Poisson-Boltzmann
equation is solved numerically with novel parallel
finite volume and monotone iterative methods. The
proposed computational techniques have been
successfully implemented on a 16-PCs based Linux
cluster with the message passing interface (MPI)
library. First of all, the Poisson-Boltzmann equation is
discretized with the FV method [20]. This
discretization leads to a system of nonlinear algebraic
equations and it is directly solved with a global

convergent MI algorithm. The MI solution technique
was proposed and applied to semiconductor device
simulation successfully by us earlier [1-8]. Based on
the strong nonlinear property of Poisson-Boltzmann
equation, the proposed new iterative method does not
require accurate initial guess to start the solution
procedure and it converges monotonically.
Furthermore, by comparing with the conventional
Newton's iterative method, the new method is easy for
implementation, relatively faster with much less
computation time, and its algorithm is inherently
parallel in large-scale computing [1-8]. The developed
parallel nonlinear Poisson-Boltzmann solver has been
tested on a variety of structure problems, such as
insulin and SOD enzyme to show the efficiency and
robustness. Achieved speedup and parallel efficiency
are also reported to demonstrate the excellent parallel
performance of the method.

The paper is organized as follows. In Sec. 2, we
state the numerical modeling for biophysical
electrostatic potential simulation. Sec. 3 presents our
simulation methodology as well as the parallel
algorithm for the model problem. Sec. 4 presents the
simulation results and achieved parallel performance.
Sec. 5 draws conclusions.



2 Numerical Modeling for Biophysical

Electrostatic Potential Problem

In this section, we state the Poisson-Boltzmann
equation for biophysical electrostatic potential
problem. Continuum models of molecules in ionic
solutions, first proposed in 1923 by Debye and
Hiickel [15], have been an important simulation
approach in molecular dynamics [16-17]. Due to the
progresses of biotechnologies, this numerical model
for studying the electrostatic interactions has been
of great interests in recent years. In biophysics, for
example, the electrostatic behavior of proteins plays
an important role in structure, binding properties,
and the kinetics of complex molecules. Modeling of
these interactions with macroscopic methodology
provides a way in the study of this issue.

We consider the Poisson-Boltzmann equation
describing the electrostatic potential around a fixed
charge distribution in an ionic solution. The three-
dimensional (3D) nonlinear partial differential
equation is as follows:
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represents a dimensionless electrostatic potential as
CD(I”) is the electrostatic potential at a field position

r, the permittivity & (r) takes the values of the
appropriate dielectric constants in the different
—2
regions of the model, K is the Debye-Hiickel
screening parameter relative with the ionic strength
of the solution, and the constants e., k, and T
represent the electron charge, Boltzmann constant,

and the absolute temperature, respectively.

In Eq. (1), the source term can be further
expressed as a sum of delta functions,

iz,é(r—n), 3)

where N is the number of molecular charges, z; is

the partial charge of each molecular atom, and 7,

represents the position of each atom in the molecule.
With the Poisson-Boltzmann equation, a system

consists of three parts, a solute, such as a protein
molecule, ions, and solvent. The dielectric
coefficient € changes by nearly two orders of
magnitude across the interface between the protein
molecule and the protein-solvent boundary. The
Debye-Hiickel screening parameter also jumps from
zero to a positive value across the interface between
the protein molecule and the protein-solvent
boundary. The importance of this equation in
biomolecular modeling is well known [18,19]. To
model this problem we treat it within a finite
domain so that it can be solved numerically.
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Fig. 1. An illustration for the 3D molecular structure
Poisson-Boltzmann problem in a bounded
domain.

As shown in Fig. 1, the unbounded domain of
Eq. (1) is often truncated into a bounded domain

QOTr OR?, where Q is an open region and I
is its boundary. The boundary conditions on [ are
provided by a given analytical expression [17]. The
equation in the bounded domain becomes:
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All above Eqgs. (4)-(8) form a 3D nonlinear elliptical
PDE and the unknown to be solved is the variable u.
We note that the nonlinear term in Eq. (4) is
monotone function in u, and it can be further proved
that the system has at most one solution. Let the

definitions of the spaces L°(Q) and H'(Q) are
as usual [21].

Theorem 1 If the nonlinear terms are estimated with
L*(Q) functions, then the equation (4) has at most

one weak solution in H'(Q).

We proceed with our solution method for the
formulated model above. Our approach to the
numerical solution of the model consists of the FV
and the MI methods. We have utilized this approach
successfully for semiconductor devices simulation
earlier [1-8].
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Fig. 2. A computational algorithm for the problem.

3  Computational Techniques

We now introduce our monotone iterative finite
volume [1-8,20] and parallel domain decomposition
computational algorithms for the numerical solution
of the above model introduced in Sec. 2. As shown

in Fig. 2, we outline the solution procedure; first of
all the model is transformed into the FV weak
formulation, the corresponding nonlinear system is
solve directly with MI method, if the solution error
does not meet the stopping criterion we refine the
nonuniform mesh automatically.
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Fig. 3. An illustration of the bounded domain for the
molecular structure simulation.

Fig 3 shows the bounded 3D domain for
molecular structure Poisson-Boltzmann model
simulation. The artificial boundary is taken far away
enough so that it does not affect the final solution of
the problem. The form of Eq. (1) is sometimes
referred to as the strong form. For FV formulation
we first choose a test function, multiply the equation
by this test function v, and then obtain the weak
form as

J’(_D He0u)+ K sinh(u)vdr = Ip(r)"dr SN C)

By using divergence theorem (integration by parts),
then we can construct the corresponding system of
nonlinear algebraic equations:

Ax = -F(x), (10)

where F and x are column vectors, A is a nXn
matrix, and » is the number of nodes after FV
discretization in the simulation domain. The volume
integrals in this formulation are approximated with
the quadrature rule [20]. The FV method (so-called
finite box method) has been one of the standard
approaches for discretizing many engineering and
science problems that involve interface layers, such
as in fluid dynamics and semiconductor device
simulation [1-8,20]. It can be shown that the matrix
A is a symmetric M-matrix. Therefore we have the
following theorem for the FV discretized nonlinear
Poisson-Boltzmann equation with tensor-product
hexahedral elements.



Theorem 2 The finite volume discretized nonlinear
Poisson-Boltzmann equation leads to a system of
nonlinear algebraic equations and the equation (10)
is well-posed.

We solve the FV discretized nonlinear system by
using the MI method. We have successfully applied
this solution technique to various semiconductor
device simulations earlier [1-8]. The MI algorithm
corresponding to the system of nonlinear algebraic
equations is

(D + AI) (m+1) _

(L + U)(m) F(X(m)) + /\lX(m),
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where x is the unknown vector, F is the nonlinear
vector form, and D, L, U, and I are diagonal, lower
triangular, upper triangular, and identity matrices,
respectively. The m is iteration loop index and
parameter A is determined node-by-node depending
on 3D structure and nonlinear property of equation.
With the similar arguments [2,7], we can prove the
solutions of Eq. (11) converge to the solution of Eq.
(10) monotonically.

Theorem 3 Let x¥ = x,” be an arbitrary vector and

x" m =1, be the solution of Eq. (11). Let x = xn()
be the solution of Eq. (10). Then x™ — x', as
m — 00,

Note that the Eq. (11) is of the Jacobi type and hence
is  highly parallel. Based on constructive
convergence property of the MI method, we further
propose here a parallel domain decomposition
algorithm for 3D Poisson-Boltzmann simulation. As
shown in Fig. 4, we perform error estimation for all
the computed approximation solutions.

For e=1 to (total number of all Cubes)
If (abs(Errorl, Error2, Error3)> tolerance error)

Cube[e] needs to be refined.  ybic cell in the 3D mesh
End If

End For Loop
Error 1| -
If (Cube[e] needs to be refined) g e Frror 3
For neighbor =110 6 Error 2

If (the level of Cube[e]>the level of neighbor i)
Refine neighbor i
End If
End For Loop
Divide the Cube[¢]
End If

Fig. 4. Error estimation and mesh refinement for 3D
molecular structure potential problem.

For more accurate solution, we have to perform
the simulation with very fine nonuniform mesh
automatically. However the fine mesh leads to a
time-consuming simulation. We now state the
parallel algorithm for the fast simulation of the
model. According to 3D molecular structure, the
simulation domain is partitioned into disjoint
sub-domains. A  geometric dynamic  graph
partitioning method in x-, y-, or z- direction is
applied to partition the total number of nodes and
assign those partitioned nodes to each processor.
Each partitioned sub-domain is solved with Eq. (11).

The proposed procedure for parallel domain
decomposition is as follows:

(p1) initialize the MPI computing environment and
the configuration of the necessary parameters;

(p2) based on the nonuniform meshing rule, a tree
structure and mesh are established;

(p3) count the number of nodes and applies an
empirical partition algorithm to determinate
how many processors are necessary for the
simulation;

(p4) all assigned jobs are solved with Eq. (11)
independently;

(p5) all the computed data communicates under the
MPI protocol;

(p6) perform error estimation for all elements and
run the mesh refinement for those elements
having larger errors;

(p7) repeats steps (p3)-(p6) until the error of all
elements is less than a specified error bound;
and

(p8) host collects all computed results and stops the
MPI environment.

Fig. 5 presents a load balancing parallel dynamic

partition algorithm that implemented in this parallel

domain decomposition above.

For (all elements)

Count number of nodes
End For Loop
Decide optimal number of processors (N) with the node numbers
The number of jobs of each processor (M) = total nodes/N
For(i=1toN)

Assign M nodes to processor_i
End For Loop

Fig. 5. A pseudo code for the dynamic partition.

The constructed Linux-cluster contains 16 PCs in
this work (Fig. 6); files access and share are through
network file system and network information system.
The user datagram protocol controlled by MPI is
applied to short distance fast communication.
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Fig. 6. The constructed 16 nodes PC cluster.

4  Results and Discussion

As shown in Fig. 7, the proposed solution technique
for an insulin test example has a good convergence
behavior. The initial guess in this simulation
example is straightforwardly set to be zero.
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Fig. 7. A plot of the convergence behavior for the
numerical solution of the three-dimensional
Poisson-Boltzmann model.

Maxmum norm rrror

The test molecules chosen for our study of the
nonlinear Poisson-Boltzmann equation are insulin at
0.1 molar, a medium size molecule and SOD at 0.1
molar, a large enzyme. These related problems, in
biophysics community, have been of great interests
and received intensive studies, recently. The
convergence behavior for the insulin simulation is
shown in Fig. 7. It takes about 120 iterations for
maximum norm error 10™. A plot of a cross section
(along x = 10) for the simulated 3D structure is
illustrated in Fig. 8. The nonuniform hexahedral
mesh is applied to simulate this 3D structure.

In addition, for a larger test example, SOD at 0.1
molar, achieved parallel speedup and efficiency are
shown in Fig. 9 to demonstrate the parallel

performance of the method. In this test, we use very
fine nonuniform mesh (400°) to locate the sharp
variation of electrostatic potential near the interface.
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Fig. 8. A cross section plot for the simulated result.

The definition of speedup is the ratio of
simulation time on a processor to that on multiple
processors. Efficiency equals to speedup divided by
number of processors. We found there is 11.8
speedup with respect to 16 processors and the
efficiency is about 74% in this test example. The
parallel efficiency is less than 80%; based on our
simulation experiences, to improve the parallel
performance, a faster network connector should be
considered in the future work.
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Fig. 9. Speedup and parallel efficiency for the SOD
simulation.

S  Conclusion

In this paper, a 3D nonlinear Poisson-Boltzmann
equation for biophysical electrostatic potential
simulation is formulated and solved numerically.
The nonlinear PDE has a weak solution and its
corresponding nonlinear algebraic system arising
from the finite volume discretized has a unique
solution. We solve this finite volume discretized 3D
nonlinear Poisson-Boltzmann equation numerically
with the proposed parallel monotone iterative
method. This computational technique has been
successfully implemented on a 16-PC Linux cluster
with the MPI library. In our simulation experience,
due to the strong nonlinear property of the
Poisson-Boltzmann equation, this parallel iterative



solution method converges monotonically and has
very good parallel performance. The developed
parallel nonlinear Poisson-Boltzmann solver has
been tested on a variety of molecular structure
problems to show its primary robustness and future
applications. Achieved speedup and parallel
efficiency also reported to demonstrate its parallel
performance.
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