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Abstract: - In this paper is presented a navigation scheme, based on a genetic algorithm,  for autonomous robot  
navigation. Potential fields are used to attract the robot by the goal position and reject it by the obstacles. In the 
scheme presented  here obstacles are automatically detected by simulated sonar sensors. The configuration of 
the optimum potential field is determined by the genetic algorithm. Intermediate goal  points are used for global 
path planning. Simulation results show that the scheme reported has a good performance in unknown 
environments with high obstacle densities.   
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1   Introduction 
The two main approaches for the implementation of 
robot navigation algorithms are artificial potential 
fields, and artificial intelligence methods.  Khatib [1] 
introduced the use of potential fields for autonomous 
navigation. The main idea is to generate attraction 
and repulsion forces to guide the robot to  its goal. 
The goal point has an attractive influence on the 
robot and each obstacle tends to push away the 
robot, in order to avoid collisions. Potential field 
methods provide an elegant solution to the path 
finding problem. Since the path is the result of the 
interaction of appropriate force fields, the path 
finding problem becomes a search for optimum field 
configurations instead of the direct construction (e.g. 
using rules) of an optimum path. Different 
approaches have been taken to calculate appropriate 
field configurations. Vadakkepat et al.[2] report the 
development of a GA for autonomous robot 
navigation based on artificial potential fields. 
Repulsion forces are assigned to obstacles in the 
environment and attraction forces are assigned to the 
goal point. The GA adjusts the constants in the force 
functions. Multiobjective optimisation is performed 
on 3 functions which measure each: error to the goal 
point, number of collisions along a candidate path, 
and total path length. This scheme requires a priory 
knowledge of the obstacle positions in order to 
evaluate the number of collisions through each 
candidate path. Kun Hsiang et. al [3] report the 
development of an autonomous robot navigation 
scheme based on potential fields and the chamfer 
distance transform for global path planning in a 
known environment, and a local fuzzy logic 
controller to avoid trap situations. Simulation and 
experimental results on a real AGV are reported for 

a simple (4 obstacles) and known environment. 
McFetridge and Ibrahim [4] report the development 
of a robot navigation scheme based on artificial 
potential fields and fuzzy rules. The main 
contribution of the work consists in the use a 
variable for the evaluation of the importance of each 
obstacle in the path of the robot. Simulation results 
on a very simple environment (one obstacle) show 
that use of the importance variable produces 
smoother and shorter trajectories. 

In this work is presented an adaptive navigation 
scheme based on artificial potential fields which are 
automatically adjusted to avoid obstacles, using a  
genetic algorithm. Auxiliary attraction points have 
been used in order to allow the robot to navigate 
around large obstacles. Each chromosome in the 
population of the GA represents the set of constants 
used to calculate the attractive and repulsive forces. 
Simulated sonar sensors are used to detect obstacles 
and the room walls. Intermediate goal  points (the 
door positions of each room in a building) constitute 
the only a priory knowledge used for global path 
planning. The problem of finding a feasible robot 
path is approached as an iterative search for an 
optimum configuration of the potential field forces.  

In the following section we describe the 
artificial potential (scalar) field and the 
corresponding (vector) force field functions used in 
this work. In section 3 we present the construction of 
the GA for optimisation of the force field during 
autonomous robot navigation. In section 4 we 
present the results of 30 simulation experiments  
performed on 3 different obstacle configurations. In 
section 5 are presented the conclusions drawn from 
the work reported. 

 



2   Potential Field and Force Field 
Functions 
The robot is represented as a particle under the 
influence of an artificial potential field U ,  defined 
as: 

repatt UUU +=   (1) 

 where: attU  and repU  are the attractive and 
repulsive potentials respectively. 

The attraction influence tends to pull the robot 
towards the target position, while repulsion tends 
to push the robot away from the obstacles. In a two 
dimensional map, the vector field of artificial 
forces   F(q) is given by the gradient of U : 
 

U−∇=)(qF    (2) 
 where: U∇ is the gradient vector of U  at 
q(x,y) robot position. 

In this manner, F is defined as the sum 
of two vectors attatt U−∇=)(qF  and 

reprep U∇=)(qF , as shown in eq. 3. 
 

attrep UU ∇−∇=)(qF     (3) 
 

2.1. Attractive and Repulsive Forces 
For stabilisation purposes[5], the potential field U  
is defined as a parabolic function, both, attU  and 

repU  are also defined in this way. The artificial force 

F is obtained from the derivation of U , both Fatt and 
Frep are derivatives of parabolic functions.  The 
following artificial attraction force Fatt is used in this 
work for the goal point, and for each of the 4 
auxiliary attraction points: 
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where:  q is the current position of the robot; 
qa is the position of  an attraction point; 
 ξ is a positive weight adjusted by the genetic 
algorithm.  

 
Eq. 4 is normalised to produce an attraction 

force independent of the distance between the robot 
and the goal point. The artificial repulsion 
force repF is defined as: 
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F rep (q) = 0  : if   d > d0 
 

where:  q is the robot position; 
qo is the obstacle position;  
d= oqq −  

0d  is the influence distance;  
η  is a positive weight adjusted by 
the genetic algorithm.  
 

As the robot gets closer to an obstacle, the repulsion 
force of the closest obstacle cells  grows in the 
opposite direction of the robot trajectory. In the 
event of a collision with an obstacle, the value of 
Frep is bounded by setting the minimum value of d to 
0.05. On the other hand if the robot distance to an 
obstacle cell is higher than 0d , that obstacle cell has 
no  effect on the robot.  
 
3   Robot Navigation Approach 
The robot is represented as a particle R that moves in 
the configuration spaceC , modelled as a two 
dimensional grid, where each cell U insideC can be 
occupied by the robot, the goal or the obstacles. 
There is also an associated obstacle map M of the 
same size of C . The obstacle map is initially empty, 
and it is filled at the positions of the obstacles 
detected by the robot, as it moves inside C . The 
goal cell, and 4 auxiliary attraction cells exert an 
attractive force on R given by Eq. 4, while each of  
the detected obstacle cells exerts repulsion forces 
given by Eq. 5 . For obstacle detection,  a 55x  grid 
simulates the robot sensors. When R  moves, the 
positions of the sensors in the mask are updated and 
used to calculate the distance mind to the closest 
detected obstacle (Fig.1). A predefined distance of  5 
is assigned to obstacles outside of the detection 
mask. 
 

 
 
Fig.1, Obstacle detection 



In order to avoid trap situations or oscillations in the 
presence of large or closely spaced obstacles [5], 4 
auxiliary attractive cells have been placed around the 
goal cell (Fig. 2). Each attractive force i

attF  of the cell 

ic , depends on the corresponding value of iξ , which 
is automatically adjusted by the genetic algorithm 
described in section 3.3. 
 
 

 
 
Fig. 2, Attraction field composed of 5 attraction cells 

with adjustable force intensity. 
 
 
3.2.Objective function for robot navigation 
An adhoc objective function was constructed to 
evaluate force field configurations which correspond 
to an optimum robot position (i.e. positions closer to 
the goal cell which also avoid obstacles). The 
objective function value of each candidate force 
field configuration is evaluated with three criteria: 
minimisation of the error distance E  between the 
robot and  the goal cell; maximisation of the distance 
dmin to the closest obstacle cell; and minimisation of 
the magnitude of the resultant repulsion force vector 
Fr. Eq. 6 shows a function which produces optimum 
(minimum) values for minimum E, maximum dmin 
and minimum magnitude of Fr. 
 
( )  2/ 2

min
r

deEf Fq ⋅⋅= − :if dmin>0   (6) 

( ) 2000=qf    :if dmin=0 
 
where:  

gyrygxrx qqqqE −+−=  

qr is a candidate cell for the new 
robot position;  
qg is the  goal cell; 
Fr is the resultant repulsion force 
vector. 
 

The construction of the objective function (f ) 
favours robot paths that run away from the obstacles 
and result in decreasing distance to the goal cell. The 
case where dmin= 0  (which corresponds to a 

collision) is severely penalised in order to avoid the 
selection of  the corresponding chromosome in the 
next generation. In Fig. 3 is shown the plot of Eq.6 
for: 0<=E<=44, 0.1<= dmin<=5, and 1=rF . 
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Fig. 3, Plot of Eq.6 for: 0<=E<=44, 0.1<= dmin<=5, 
and 1=rF ; 
 
3.3. The genetic algorithm 
The principles of operation of a GA are presented in 
[6]. In this work a GA is used to optimise the values 
of the weights ( iξ ) of the 5 attraction cells and the 
values of the weights  ( jη )  of up to 155 obstacle 
cells. Each variable has a range of {0, 1000} and is 
binary coded with 20 bits of resolution in order to 
maintain a large number of values for the repulsion 
and attraction forces. A chromosome is formed by 
concatenation of the 160 binary coded variables. The 
GA searches for optimum values of iξ  and jη  in a 
given binary string (chromosome) which move the 
robot to a position such that f (Eq 6) has a minimum 
value. Only those  jη  which have been detected by 
the robot are used to calculate the force fields given 
by Eq. 5, the rest of the repulsion weights in the 
string is ignored. At each generation of the GA, 
every chromosome in the current population is 
evaluated using Eqs. 4, 5, and 6. The selection 
probability (Ps) of a given chromosome is 
determined with a ranking method [7].  Each 
chromosome in the current population is assigned a 
number of copies with probability Ps using 
stochastic universal sampling [8]. Single point 
crossover is applied with a probability of 0.6, 
mutation is applied to each string with a probability 
of 0.01 per bit. Finally, the next generation of the 



GA is formed using fitness based reinsertion  with a 
generation gap of 0.8. This process continues until 
the robot reaches the goal cell or 200 generations are 
completed. 
 
4   Experiments and results 
The algorithm was implemented in Matlab using the 
GA toolbox developed at the University of Sheffield 
[7]. For evaluation we used a cell map of 40x40 cells 
simulating a 5-room floor. Shown in Fig. 4a counter 
clockwise from the top-left corner: the first room 
simulates an storage room, the next room simulates a 
hospital bed, the next room simulates a meeting 
room, the next room is empty with random 
obstacles, and the last room is a rotated hospital bed. 
Three different random obstacle distributions of 
different obstacle densities were used ( Figs. 4a, 4b, 
4c).   

Ten experiments were performed for each 
obstacle distribution, the start and goal positions for 
each experiment are shown in table 1, the origin is 
placed at the top-left corner of the cell map. Two 
intermediate goal points have been used to guide the 
robot through the corridor corner as well as through 
the door of the appropriate room. The positions of 
the intermediate goal points are also shown in table 
1. The robot travels from the start position to each 
successive intermediate goal point and to the final 
goal point. 
 

Exp.  
No 

(start)-(goal) intermediate 
goal 1 

intermediat
e goal 2 

1 (34, 9)-(11, 3) (20,10) (15,10) 
2 (34, 9)-(13, 14) (20,10) (15,21) 
3 (34, 9)-(3, 26) (20,10) (15,38) 
4 (34, 9)-(36, 27) (20,10) (25,38) 
5 (34, 9)-(37, 14) (20,10) (25,22) 
6 (34, 4)-(3, 6) (20,10) (15,10) 
7 (34, 4)-(3, 14) (20,10) (15,21) 
8 (34, 4)-(12, 26) (20,10) (15,38) 
9 (34, 4)-(30, 30) (20,10) (25,38) 

10 (34, 4)-(38, 22) (20,10) (25,22) 
Table 1. Start-goal and intermediate goal positions 
of each experiment 
 
In table 2 are shown the results of the 30 experiments 
performed, the first column shows the obstacle 
distribution used (Fig.4), and the (start)-(goal) 
position number as previously shown in table 1. 
Columns two and three show respectively, the total 
distance travelled by the robot (measured in cells), 
and the deviation (as a percentage) from the optimum 
shortest path. 
 

 
 

Exp.No. Total distance (cells) Deviation from 
optimum 1  (%) 

a-1 39 34.5 
a-2 33 10.0 
a-3 collision collision 
a-4 62 14.8 
a-5 48 41.2 
a-6 36 16.1 
a-7 47 11.9 
a-8 67 24.1 
a-9 71 26.8 
a-10 43 7.5 
b-1 30 15.4 
b-2 41 36.7 
b-3 collision collision 
b-4 66 17.9 
b-5 44 4.8 
b-6 43 26.5 
b-7 collision collision 
b-8 collision collision 
b-9 55 12.2 
b-10 44 15.8 
c-1 34 17.2 
c-2 44 29.4 
c-3 collision collision 
c-4 68 21.4 
c-5 46 15.0 
c-6 40 21.2 
c-7 49 11.4 
c-8 70 27.2 
c-9 75 41.5 
c-10 48 17.0 
  Average:20.7% 

Table 2. Experiment results: Total distance 1, and 
Deviation from optimum 1 obtained with auxiliary 
cells placed at fixed distance (15 cells) from the goal 
 
From the results shown in table 2 the success rate 
(i.e. the percentage of paths completed without 
collision) is 83.3%. The average deviation from the 
optimum path length is 21%. In figure 5 are shown 5 
paths produced by the navigation approach for 
obstacle configuration (c) (as shown in Fig.4), which 
has the highest obstacle density.  The average time 
for path completion on a Pentium III PC at 750MHz 
is 115s with an average path length of 56 cells 
(i.e.2.05 s/step). 
 
 
 
 
 



   
(a) low density  (b) medium density 

 
(c) high density 

 
Fig.4, Obstacle distributions tested 
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c-5 

Fig. 5, Paths produced by the navigation 
algorithm, for maximum obstacle density. 

5   Conclusions 
An autonomous robot navigation algorithm has been 
developed. The scheme would enable a mobile 
robot, equipped with sonar sensors, to navigate 
through unknown obstacle distributions. 
Intermediate goal points have been used to guide the 
robot through corridor corners and through the door 
of the appropriate room in a simulated floor plan. 
This knowledge is available from the floor plan of 
any building. Given an start and end position, 
intermediate goal positions, can be easily calculated 
(e.g. using rules). The potential fields approach has 
been used and modified to allow avoidance of large 
or closely spaced obstacles, through the use of 
auxiliary attraction cells with adjustable force 
strength, 4 auxiliary cells have been used in this 
work providing good simulation results.  

A genetic algorithm has been used for on-
line optimisation of the force intensity parameters of 
the repulsion and attraction cells, as well as the 
position parameter of the auxiliary attraction cells. 
The scheme has been able to complete ten different 
paths in three different unknown obstacle 
configurations with a success rate of 83.3%.  The 
total estimated processing time (i.e. ultrasound 
scanning plus force field optimisation) of an 
implementation in C of the scheme reported is 0.36 
s/step, this value would allow for  a maximum robot 
speed of 0.27 m/s (with a cell  size of  0.1 x 0.1m). 
This is within acceptable robot speed values for real 
applications. 
 
References: 
[1] Khatib O. Real-Time Obstacle Avoidance for 

Manipulators and Mobile Robots. In: 
Autonomous Robot Vehicles, I.J. Cox and G.T. 
Wilfong, Eds. Springer-Verlag 1990; 396-404. 

[2] Vadakkepat, P., Kay Chen Tan, Wang Ming-
Liang. Evolutionary artificial potential fields and 
their application in real time robot path planning. 
In: Proceedings of the 2000 Congress on 
Evolutionary Computation 2000; July: 256-263. 

[3] Kun-Hsiang Wu, Chin-Hsing Chen, and Juing-
Ming Ko. Path planning and prototype design of 
an AGV. Mathematical and Computer Modelling 
1999; 30: 147-167. 

[4] McFetridge L. and Yousef Ibrahim M. New 
technique of mobile robot navigation using a 
hybrid adaptive fuzzy-potential field approach. 
Computers ind. Engng 1998; 35 (3-4):471-474. 

[5] Koren Y., Borenstein J. Potential field methods 
and their inherent limitations for mobile robot 
navigation. In: Proceedings of the IEEE Int. 
Conf. on Robotics and Automation 1991;1398-
1404. 



[6] Goldberg D.E.: Genetic Algorithms in Search, 
Optimisation, and Machine Learning. Addison-
Wesley, MA, (1989).  

[7] Chipperfield, P. Fleming, H. Pohlheim, C. 
Fonseca.: Genetic Algorithm Toolbox for use 
with Matlab. User's Guide. Automatic Control 
and Systems Engineering, University of 
Sheffield, UK (1995). 

[8] Baker, J.E.: Reducing bias and inefficiency in 
the selection algorithm. Proc. 2nd Int. Conf. on 
Genetic Algorithms. Hillsdale, N.J., USA, 
1987; 14-21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


