
1 

A Comparative Study Between Vector and Matrix Representations of 
Chromosomes in TSP 

   
María A. Osorio, Rosaliano Pérez, Flaviano Pérez 

School of Computer Sciences, 
Autonomous Univesity of Puebla, 

Ciudad Universitaria, San Manuel. Puebla, Pue. 72550 
México. 
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1. Introduction 
The TSP has become a classic problem 

because it serves to represent a great number 
of applications in real life, as the colouring 
sequence in textile industry, the design of 
insulating material and optic filters, the 
planning of trajectories in robotics and many 
other examples that can be represented using 
sequences [6]. Besides, it may represent a big 
number of combinatorial problems that 
cannot be solved in polynomial time and are 
NP hard. 

The exponential nature of the time needed 
to solve exactly this problem has originated, 
during the last decades, the development of 
heuristic algorithms to approximate its 
optimal solution [6]. 

The TSP was the focus of attention of 
several researches that utilized genetic 
algorithms for its solution. Recently, the 
research has focused on the best 
chromosomes structures and the most 
suitable operators to improve the numerical 
solutions and to reduce solution times (see 
Fox y McMahon [4], Grefenstette [8], Jog 
[10], and Schaffer [14]).  

Genetic algorithms are defined as 
searching techniques that use natural 
selection and genetic concepts to 

approximate the global optimum in a 
searching space.  Our objective was to obtain 
comparative results about the performance of 
matrix and vector chromosome  structures 
and different genetic operators for TSP.  

To relate the experience obtained, we 
present history, importance and model 
representation of TSP in section 2. In section 
3, we describe the vector chromosome 
structure for TSP and the operators 
associated. Section 4 describes different 
matrix chromosome structures for TSP and 
their operators. Finally, section 5 contains 
tables with different parameter values, 
comparative results and conclusions. 

 
 

2.  Travelling Salesman Problem 
The TSP can be formulated saying that 

the travelling salesman must visit every city 
in his territory exactly once and then return to 
the starting point. Given the cost of travel 
between all cities, he should plan his 
itinerary for a minimum total cost of the 
entire tour. It may be formulated as a 
maximisation problem, if he could obtain a 
different profit according to its itinerary, and 
the problem will plan his itinerary for a 
maximum profit.  
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Space solution for TSP is the n-cities 
permutation, n!. Any simple permutation is a 
different solution. The optimum is the 
permutation that correspond to a travel with 
the minimum cost or the maximum profit. 
The evaluation function is the sum of the cost 
or the profit associated with each segment 
included in the itinerary. 

The TSP was already documented in 1759 
by Euler. The term ‘travelling salesman’ was 
first used in 1932 in a German book written 
by a veteran travelling salesman. The TSP, in 
the way we know it now, was introduced by 
the RAND Corporation in 1948. The TSP 
also became popular at that time due to the 
apparition of linear programming and the 
attempts to solve combinatorial problems. 

In 1979, TSP was probed to be NP-hard, a 
special kind of NP-complete problems (see 
Garey [5]). If one can find a solution in 
polynomial time to one of them, it may find 
it for all NP and then, P=NP. But nobody has 
been able to find efficient algorithms for NP-
complete problems until now. 

The TSP can be symmetric or 
asymmetric. In the symmetric case, departure 
and return costs are the same and can be 
represented with a no directed graph. For the 
asymmetric case, the more common one, the 
departure and return costs are different and 
can only be represented by a directed graph. 
The symmetric problem can be seen as a 
special case of the asymmetric one. This 
research was directed to the asymmetric case 
and all references to TSP correspond to the 
asymmetric case. 

 
 

3. Vector Representation 
There are three vector representations for 

TSP: adjacency, ordinal and path. They have 
one common mutation operator that 
introduces changes into the tour, but different 
crossover operators. 

The binary representation of tours is not 
well suited for the TSP. We are interested in 
the best permutation of cities and the binary 
representation will no provide any advantage 

and would require a special repair algorithm, 
since a change of a single bit may result in an 
illegal tour, but there are few exceptions that 
use binary representation, classical operators, 
crossover and mutation,  and report high 
quality results [11]. 

The adjacency representation describes 
a tour as a list of n cities. The city j is listed 
in the position i if and only if the tour leads 
from city i to city j.  Each tour has only one 
adjacency list representation; but, some 
adjacency lists can represent illegal tours. It 
does not support the classical crossover 
operator and a repair algorithm may be 
necessary. It has three crossover operators: 
alternating edges, subtour chunks, and 
heuristic crossovers [8]. 

The ordinal representation describes a 
tour as a list of n cities; the i-th element of 
the list is a number in the range from 1 to 
n−i+1. There is an ordered set of cities, 
which will be used as a reference point for 
the ordinal representation. The tour is 
described by an ordinal vector where the first 
element in the list is the first city visited. If 
we eliminate the first city in the set, the 
second element is the next city position in the 
current cities set and so on. The main 
advantage is that we can use easily the 
classical crossover.  We can cut any two 
tours in the ordinal representation, after some 
position and cross them together, to produce 
two offspring, each of them a legal tour.   

The path representation, used in this 
research, is the most natural representation of 
a tour. The vector contains an ordered list 
describing the itinerary of the cities that will 
be visited in the tour. The operator associated 
with this representation will be described in 
the next section. 

 
3.1 Path Representation  

The path representation for the tour 5-1-7-
8-9-4-6-2-3, is simply  (5 1 7  8 9 4 6 2 3). 
Three crossovers are defined for this 
representation: partially mapped (PMX), 
order (OX), and  cycle (CX) crossovers.  
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Crossovers. The partially mapped 
crossover (PMX) was proposed by Goldberg 
and Lingle [7], and builds an offspring by 
choosing a subsequence from the tour in one 
parent and preserving the order and position 
of as many cities as possible from the tour in 
the other parent. A subsequence of a tour is 
selected by choosing two random cut points, 
which serve as boundaries for swapping 
operations. The PMX crossover exploits 
important similarities in the value and 
ordering simultaneously when used with an 
appropriate reproductive plan. 

The order crossover (OX), proposed by 
Davis [3], builds an offspring by choosing a 
subsequence of the tour in one parent and 
preserving the relative order of cities in the 
other. The OX crossover exploits a property 
of the path representation, that the order of 
cities (not their positions) are important. 

The cycle (CX) crossover, proposed by 
Oliver in 1987, builds an offspring in such a 
way that each city (and its position) comes 
from one of the parents until a chosen point. 
The offspring will contain the first city in the 
first parent, then the first city in the second 
parent, but using the position in the first 
parent and so on. The remaining cities are 
filled from the other parent. The CX 
preserves the absolute position of the 
elements in the parent sequence. We did not 
use the CX crossover, because the offspring 
are mainly influenced by only one parent. 

Sometimes, the population is prematurely 
stabilized with the PMX and OX crossovers 
because the parents become too similar. We 
tried several modifications until we found 
one that allow us to generate offspring 
different to their parents, avoiding in that 
way a premature stabilization. 

Our modification uses two cut points and 
the same subsequence between them in the 
offspring. The rest of the list will have the 
parents’ sequence in a different sense. It is 
useful in the case where parents become too 
similar or the same, as in this example:  P1= 
(1 2 3 | 4 5 6 7 | 8 9) and  P2 = (1 2 3 | 4 5 6 7 
| 8 9). The cut points marked by ‘|’ would 

produce the following offspring H1= (x x x | 
4 5 6 7 |  x x) and  H2= (x x x | 4 5 6 7 | x x), 
with the same parents segment between cut 
points. We use P2 sequence after the second 
cut point and continue with the initial 
sequence before the first cut point. We get 
the sequence, 8-9-1-2-3, that will be used 
from left to right to fill the x‘s in H1. The 
result is H1= (8 9 1 | 4 5 6 7 | 2 3). For H2, 
we can use P1 sequence from right to left, 
removing cities already present in the list. 
The resultant sequence is 9-8-3-2-1, that can 
be used to fill the x’s  from left to right in 
H2. The H2= (9 8 3 | 4 5 6 7 | 2 1). 

Mutation. Mutation arbitrarily alters one 
or more genes of a selected chromosome, by 
a random change with a probability equal to 
the mutation rate. The intuition behind the 
mutation operator is the introduction of some 
extra variability in the population. It is useful 
to escape from local optima points when 
population is prematurely stabilized.  
Proportional probability corresponds to the 
relative position of the individual in the 
population. It affects a small percentage of 
individuals in the population. Mutation 
operators for TSP are insertion, reciprocal 
change, inversion and three edges selection. 

For insertion operator, we randomly select 
a city and insert it in a different position in 
the tour, for reciprocal change operator, we 
randomly interchange two cities according to 
their position in the tour, and for inversion 
operator, we invert the cities’ order between 
two random cut points (Grefenstette [8]). 

In three edges operator, we randomly 
select three edges in the tour, as A=(a1,a2),  
B=(b1,b2)  and  C=(c1,c2). Later, we obtain 
the new tour connecting the city a1 in edge A 
with city b2 in edge B; the city c1 in egde C 
with city a2 in edge A and the city b1 in edge 
B with city c2 in edge C, generating a new 
tour. Restrictions apply, enforcing an order 
preservation between A, B y C, and a 
clockwise sense in the connection (Aho  [1]).  
Because their great ability to improve 
diversity in the population, we used the 
insertion and three edge operators.  
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4.  Matrix Representation  
Lately, there were three independent 

attempts to construct an evolution program 
using matrix representation for chromosomes 
(Fox and McMahon [4], Seniw [11], and 
Homaifar and Guan[9]). Fox and McMahon 
represented a tour as a precedence binary 
matrix M. Matrix element mij in row i and 
column j contains a 1 if and only if the city i 
occurs before city j in the tour. The number 
of ones in this matrix is exactly  n(n−1)/2; 
there are zeros in the diagonal where i and j 
has the same value and the indexes have the  
transitivity property: if there is 1 in the 
positions ij and jk, there will be 1 in ik. 

In the second approach described by 
David Seniw, matrix element mij in the row i 
and column j contains a 1 if and only if the 
tour goes from city i directly to city j. There 
is only one nonzero entry for each row and 
each column, because there is only one city 
visited prior and after city i. Each complete 
tour is represented as a binary matrix with 
only one bit in each row and one bit in each 
column set to one. Subtours were allowed 
thinking that natural clustering would take 
place. At the end, the best chromosome is 
reduced to a single tour by successively 
combining pairs of subtours using a 
deterministic algorithm. The third approach, 
proposed by Homaifar and Guan [9] offers 
more advantages and was implemented here.  

 

4.1 Homaifar and Guan’s Matrix  
      Representation and Operators 

The mij element of the binary matrix M is 
set to 1 if an only if there is an edge from city 
i to city j. The matrix representation for 
chromosomes P1= (1,3,5,4,2) and P2= 
(2,4,3,1,5) is shown in Fig. 1.  

Crossover. The matrix crossover operator 
(MX) exchanges all entries of the two parent 
matrices between two crossover points that 
cut the matrices vertically. An additional 
“repair algorithm” is run to cut and connect 
cycles and to produce a legal tour.  Both 
offspring H1 and H2 in Fig. 1, have 
crossover points in columns 3 and 4 and are 
illegal. First step in the repair algorithm 
moves some ones in matrices in such a way 
that each row and each column has precisely 
one 1. For example, H1 has a duplication of 
ones in row 5, and the 1 in position M54 will 
be moved to position  M14, and H2 has a 
duplication in row 1, and the 1 in position 
M13 will be moved to position M53.  

Finally, H1 represents the legal tour 
(1,4,3,5,2) and H2, subtours  (1,5,3) and 
(4,2). Second step, in the repair algorithm, 
applies only in second offspring. In this 
stage, the algorithm cuts and connects 
subtours to produce a legal tour. The cut and 
connect phase takes into account the existing 
edges in the original parents, i.e., edge  (5,4) 
is selected to connect the two subtours. The 
complete tour (a legal second offspring) is 
(1,5,4,2,3). 

                P1                                          P2                                         H1                                        H2 
0 0 1 0 0  0 0 0 0 1  0 0 0 0 0  0 0 1 0 1 
1 0 0 0 0  0 0 0 1 0  1 0 0 0 0  0 0 0 1 0 
0 0 0 0 1  1 0 0 0 0  0 0 0 0 1  1 0 0 0 0 
0 1 0 0 0  0 0 1 0 0  0 0 1 0 0  0 1 0 0 0 
0 0 0 1 0  0 1 0 0 0  0 1 0 1 0  0 0 0 0 0 

Fig. 1 Homaifar and Guan’s Matrix Representation 
 

Mutation. It can use the same mutation 
operators described for the vector type. We 
used insertion, reciprocal change and three 
edges selection for the Homaifar and Guan’s 
matrix representation. 

 
 

5. Computational Results 
We used instances, generated with 

random uniform distributions, with different 
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sizes and previous known optimal solutions 
to test different values for each parameter, 
trying to improve our algorithm performance.  

We tested populations with 10, 15, 20 y 
25 individuals in each representation to select 
population size. Solution remained similar 
for larger sizes while the CPU time increased 
enormously. We tested probabilities of 50%, 
60%, 70% and 80% for vector and matrix 
representations in Crossover; and 1%, 2% 
and 3% for matrix representation and 3%, 5% 
and 7% for vector representation in Mutation. 

Best results for vector representation, 
were obtained with a population size of 20 
individuals, modified crossover operator 
(OX) with a probability of 70%, and the 
insertion and three edges selection operators 
for mutation with a probability of 7%. 

Best results for the Homaifar and Guan’s 
matrix representation, were obtained with a 
population size of 10 individuals, insertion, 
reciprocal change and three edges selection 
with a crossover probability of 80% and a 
mutation probability of 1%. We used a 

random crossover operator in each instance 
(each operator was applied in approx. 1/3 of 
the complete set). Mutation operators were a 
great source of diversity here.  

We tested 10 instances to get the average 
of the relative error. The optimal values were 
obtained with CPLEX.  We reported the 
relative error between the best solution found 
by our genetic algorithm using 50,000 
generations and the real optimal value. 

Table 1 shows  relative errors, for vector 
and matrix structures. For 50,000 
generations, we used probabilities of 0.5, 0.6, 
0.7 and 0.8. For 100,000 generations we only 
used 0.7 in vector case and 0.8 in matrix 
cases, the probabilities that produced the best 
results for the 50,000 generations cases. 

We did the same computational tests for 
the maximization case with randomly 
generated instances. The best crossover 
probabilities were 0.7 for the vector 
representation and 0.8 for the matrix 
representation. . 

 
Crossover                Vector Representation              Matrix Representation 
Probability 0.5 0.6 0.7 0.8 0.7 0.5 0.6 0.7 0.8 0.8 

Cities Generations: 50,000 100,000 Number of Generations: 50,000 100,000 
20 0.1217 0.1006 0.1086 0.1157 0.0821 0.0833 0.0682 0.0824 0.0484 0.0470 
40 0.1312 0.1145 0.1580 0.1201 0.1572 0.1345 0.1528 0.1412 0.1368 0.1302 
60 0.1864 0.2177 0.1980 0.2217 0.1830 0.2627 0.2647 0.2441 0.2814 0.2298 
80 0.2404 0.2585 0.2414 0.2499 0.2052 0.3170 0.3466 0.3385 0.3286 0.3145 

Table 1. Crossover Probability and Relative Error 
 

We used the number of iterations that 
helped us to reach the optimum value with 
those parameters. Table 2 has the average 
number of iterations for every ten instances. 

Number of generations has a greater 
impact in the vector representation while it is 
not affecting too much the performance in 
the matrix case.  Matrix representation has a 
better performance for problems with a small 
number of cities and a worse performance for 
instances with a big number of cities.  

We used 50,000 generations, and a 
crossover probability of 0.7 and 0.8 for the 
vector  and matrix chromosome structures.  

Maximization instances can be solved 
with very little relative errors, while 
minimization instances produced bigger 
relative errors. In both cases, the results were 
better with the vector representation for 
examples with more than 20 cities.  

Number of iterations has a bigger 
correlation with the number of cities in the 
matrix representation, while relative error is 
strongly  dependent of the number of cities. 

In cases with a high correlation 
coefficients between the number of cities and 
the number of iterations needed to approach 
the best solution, we can use minimum 
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squares to relate number of cities with 
‘advised’ number of iterations to solve the 
problem and to know in advance the relative 
error expected. 

For the Maximization type, the best 
crossover probabilities were 0.7 for the 
vector representation and 0.8 for the matrix 
representation. Relative errors for each 
problem type are in Table 2. 

Our results show that data structure, size 
population and crossover and mutation 
operators and its specific probability, play a 
very important role in the solution of TSP 
with genetic algorithms. This research can be 
seen as another step to determine the impact 
of chromosome structures in the quality of 
the solutions and the CPU time needed to 
solve  the asymmetric  TSP. 

 
 Vector Representation Matrix Representation 

 Minimization Maximization Minimization Maximization 
Cities Iterations Rel..Error  Iterations Rel. Error Iterations Rel. Error . Iterations Rel. Error . 

20 28509 0.0821 6913 0.0036 8902 0.0484 11471 0.0135 
40 17679 0.1572 26861 0.0090 37707 0.1368 39871 0.0252 
60 42757 0.1830 37912 0.0111 38126 0.2814 40988 0.0651 
80 47486 0.2052 47832 0.0145 47117 0.3286 49549 0.0757 

Correlation 0.8686 0.9224 0.8941 -0.0597 0.9196 0.9828 0.8692 0.9762 
Table 2. Iterations and Relative Error 
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