
1

A Comparative Study Between Vector and Matrix Representations of
Chromosomes in TSP

María A. Osorio, Rosaliano Pérez, Flaviano Pérez

School of Computer Sciences,
Autonomous Univesity of Puebla,

Ciudad Universitaria, San Manuel. Puebla, Pue. 72550
México.

Abstract: The data structure utilized to represent the chromosomes and its associated
operators has a strong impact in the genetic algorithms performance. The present research
has the objective to show the performance differences between the vector and the matrix
representation of chromosomes, its operators associated and the parameters value, in the
solution of asymmetric travelling salesman problems with genetic algorithms.

Keywords: Travelling Salesman Problem (TSP), Genetic Algorithms, Evolutive Programs,
 Chromosomes Representation

1. Introduction
The TSP has become a classic problem

because it serves to represent a great number
of applications in real life, as the colouring
sequence in textile industry, the design of
insulating material and optic filters, the
planning of trajectories in robotics and many
other examples that can be represented using
sequences [6]. Besides, it may represent a big
number of combinatorial problems that
cannot be solved in polynomial time and are
NP hard.

The exponential nature of the time needed
to solve exactly this problem has originated,
during the last decades, the development of
heuristic algorithms to approximate its
optimal solution [6].

The TSP was the focus of attention of
several researches that utilized genetic
algorithms for its solution. Recently, the
research has focused on the best
chromosomes structures and the most
suitable operators to improve the numerical
solutions and to reduce solution times (see
Fox y McMahon [4], Grefenstette [8], Jog
[10], and Schaffer [14]).

Genetic algorithms are defined as
searching techniques that use natural
selection and genetic concepts to

approximate the global optimum in a
searching space. Our objective was to obtain
comparative results about the performance of
matrix and vector chromosome structures
and different genetic operators for TSP.

To relate the experience obtained, we
present history, importance and model
representation of TSP in section 2. In section
3, we describe the vector chromosome
structure for TSP and the operators
associated. Section 4 describes different
matrix chromosome structures for TSP and
their operators. Finally, section 5 contains
tables with different parameter values,
comparative results and conclusions.

2. Travelling Salesman Problem
The TSP can be formulated saying that

the travelling salesman must visit every city
in his territory exactly once and then return to
the starting point. Given the cost of travel
between all cities, he should plan his
itinerary for a minimum total cost of the
entire tour. It may be formulated as a
maximisation problem, if he could obtain a
different profit according to its itinerary, and
the problem will plan his itinerary for a
maximum profit.

2

Space solution for TSP is the n-cities
permutation, n!. Any simple permutation is a
different solution. The optimum is the
permutation that correspond to a travel with
the minimum cost or the maximum profit.
The evaluation function is the sum of the cost
or the profit associated with each segment
included in the itinerary.

The TSP was already documented in 1759
by Euler. The term ‘travelling salesman’ was
first used in 1932 in a German book written
by a veteran travelling salesman. The TSP, in
the way we know it now, was introduced by
the RAND Corporation in 1948. The TSP
also became popular at that time due to the
apparition of linear programming and the
attempts to solve combinatorial problems.

In 1979, TSP was probed to be NP-hard, a
special kind of NP-complete problems (see
Garey [5]). If one can find a solution in
polynomial time to one of them, it may find
it for all NP and then, P=NP. But nobody has
been able to find efficient algorithms for NP-
complete problems until now.

The TSP can be symmetric or
asymmetric. In the symmetric case, departure
and return costs are the same and can be
represented with a no directed graph. For the
asymmetric case, the more common one, the
departure and return costs are different and
can only be represented by a directed graph.
The symmetric problem can be seen as a
special case of the asymmetric one. This
research was directed to the asymmetric case
and all references to TSP correspond to the
asymmetric case.

3. Vector Representation
There are three vector representations for

TSP: adjacency, ordinal and path. They have
one common mutation operator that
introduces changes into the tour, but different
crossover operators.

The binary representation of tours is not
well suited for the TSP. We are interested in
the best permutation of cities and the binary
representation will no provide any advantage

and would require a special repair algorithm,
since a change of a single bit may result in an
illegal tour, but there are few exceptions that
use binary representation, classical operators,
crossover and mutation, and report high
quality results [11].

The adjacency representation describes
a tour as a list of n cities. The city j is listed
in the position i if and only if the tour leads
from city i to city j. Each tour has only one
adjacency list representation; but, some
adjacency lists can represent illegal tours. It
does not support the classical crossover
operator and a repair algorithm may be
necessary. It has three crossover operators:
alternating edges, subtour chunks, and
heuristic crossovers [8].

The ordinal representation describes a
tour as a list of n cities; the i-th element of
the list is a number in the range from 1 to
n−i+1. There is an ordered set of cities,
which will be used as a reference point for
the ordinal representation. The tour is
described by an ordinal vector where the first
element in the list is the first city visited. If
we eliminate the first city in the set, the
second element is the next city position in the
current cities set and so on. The main
advantage is that we can use easily the
classical crossover. We can cut any two
tours in the ordinal representation, after some
position and cross them together, to produce
two offspring, each of them a legal tour.

The path representation, used in this
research, is the most natural representation of
a tour. The vector contains an ordered list
describing the itinerary of the cities that will
be visited in the tour. The operator associated
with this representation will be described in
the next section.

3.1 Path Representation

The path representation for the tour 5-1-7-
8-9-4-6-2-3, is simply (5 1 7 8 9 4 6 2 3).
Three crossovers are defined for this
representation: partially mapped (PMX),
order (OX), and cycle (CX) crossovers.

3

Crossovers. The partially mapped
crossover (PMX) was proposed by Goldberg
and Lingle [7], and builds an offspring by
choosing a subsequence from the tour in one
parent and preserving the order and position
of as many cities as possible from the tour in
the other parent. A subsequence of a tour is
selected by choosing two random cut points,
which serve as boundaries for swapping
operations. The PMX crossover exploits
important similarities in the value and
ordering simultaneously when used with an
appropriate reproductive plan.

The order crossover (OX), proposed by
Davis [3], builds an offspring by choosing a
subsequence of the tour in one parent and
preserving the relative order of cities in the
other. The OX crossover exploits a property
of the path representation, that the order of
cities (not their positions) are important.

The cycle (CX) crossover, proposed by
Oliver in 1987, builds an offspring in such a
way that each city (and its position) comes
from one of the parents until a chosen point.
The offspring will contain the first city in the
first parent, then the first city in the second
parent, but using the position in the first
parent and so on. The remaining cities are
filled from the other parent. The CX
preserves the absolute position of the
elements in the parent sequence. We did not
use the CX crossover, because the offspring
are mainly influenced by only one parent.

Sometimes, the population is prematurely
stabilized with the PMX and OX crossovers
because the parents become too similar. We
tried several modifications until we found
one that allow us to generate offspring
different to their parents, avoiding in that
way a premature stabilization.

Our modification uses two cut points and
the same subsequence between them in the
offspring. The rest of the list will have the
parents’ sequence in a different sense. It is
useful in the case where parents become too
similar or the same, as in this example: P1=
(1 2 3 | 4 5 6 7 | 8 9) and P2 = (1 2 3 | 4 5 6 7
| 8 9). The cut points marked by ‘|’ would

produce the following offspring H1= (x x x |
4 5 6 7 | x x) and H2= (x x x | 4 5 6 7 | x x),
with the same parents segment between cut
points. We use P2 sequence after the second
cut point and continue with the initial
sequence before the first cut point. We get
the sequence, 8-9-1-2-3, that will be used
from left to right to fill the x‘s in H1. The
result is H1= (8 9 1 | 4 5 6 7 | 2 3). For H2,
we can use P1 sequence from right to left,
removing cities already present in the list.
The resultant sequence is 9-8-3-2-1, that can
be used to fill the x’s from left to right in
H2. The H2= (9 8 3 | 4 5 6 7 | 2 1).

Mutation. Mutation arbitrarily alters one
or more genes of a selected chromosome, by
a random change with a probability equal to
the mutation rate. The intuition behind the
mutation operator is the introduction of some
extra variability in the population. It is useful
to escape from local optima points when
population is prematurely stabilized.
Proportional probability corresponds to the
relative position of the individual in the
population. It affects a small percentage of
individuals in the population. Mutation
operators for TSP are insertion, reciprocal
change, inversion and three edges selection.

For insertion operator, we randomly select
a city and insert it in a different position in
the tour, for reciprocal change operator, we
randomly interchange two cities according to
their position in the tour, and for inversion
operator, we invert the cities’ order between
two random cut points (Grefenstette [8]).

In three edges operator, we randomly
select three edges in the tour, as A=(a1,a2),
B=(b1,b2) and C=(c1,c2). Later, we obtain
the new tour connecting the city a1 in edge A
with city b2 in edge B; the city c1 in egde C
with city a2 in edge A and the city b1 in edge
B with city c2 in edge C, generating a new
tour. Restrictions apply, enforcing an order
preservation between A, B y C, and a
clockwise sense in the connection (Aho [1]).
Because their great ability to improve
diversity in the population, we used the
insertion and three edge operators.

4

4. Matrix Representation
Lately, there were three independent

attempts to construct an evolution program
using matrix representation for chromosomes
(Fox and McMahon [4], Seniw [11], and
Homaifar and Guan[9]). Fox and McMahon
represented a tour as a precedence binary
matrix M. Matrix element mij in row i and
column j contains a 1 if and only if the city i
occurs before city j in the tour. The number
of ones in this matrix is exactly n(n−1)/2;
there are zeros in the diagonal where i and j
has the same value and the indexes have the
transitivity property: if there is 1 in the
positions ij and jk, there will be 1 in ik.

In the second approach described by
David Seniw, matrix element mij in the row i
and column j contains a 1 if and only if the
tour goes from city i directly to city j. There
is only one nonzero entry for each row and
each column, because there is only one city
visited prior and after city i. Each complete
tour is represented as a binary matrix with
only one bit in each row and one bit in each
column set to one. Subtours were allowed
thinking that natural clustering would take
place. At the end, the best chromosome is
reduced to a single tour by successively
combining pairs of subtours using a
deterministic algorithm. The third approach,
proposed by Homaifar and Guan [9] offers
more advantages and was implemented here.

4.1 Homaifar and Guan’s Matrix
 Representation and Operators

The mij element of the binary matrix M is
set to 1 if an only if there is an edge from city
i to city j. The matrix representation for
chromosomes P1= (1,3,5,4,2) and P2=
(2,4,3,1,5) is shown in Fig. 1.

Crossover. The matrix crossover operator
(MX) exchanges all entries of the two parent
matrices between two crossover points that
cut the matrices vertically. An additional
“repair algorithm” is run to cut and connect
cycles and to produce a legal tour. Both
offspring H1 and H2 in Fig. 1, have
crossover points in columns 3 and 4 and are
illegal. First step in the repair algorithm
moves some ones in matrices in such a way
that each row and each column has precisely
one 1. For example, H1 has a duplication of
ones in row 5, and the 1 in position M54 will
be moved to position M14, and H2 has a
duplication in row 1, and the 1 in position
M13 will be moved to position M53.

Finally, H1 represents the legal tour
(1,4,3,5,2) and H2, subtours (1,5,3) and
(4,2). Second step, in the repair algorithm,
applies only in second offspring. In this
stage, the algorithm cuts and connects
subtours to produce a legal tour. The cut and
connect phase takes into account the existing
edges in the original parents, i.e., edge (5,4)
is selected to connect the two subtours. The
complete tour (a legal second offspring) is
(1,5,4,2,3).

 P1 P2 H1 H2
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0

Fig. 1 Homaifar and Guan’s Matrix Representation

Mutation. It can use the same mutation
operators described for the vector type. We
used insertion, reciprocal change and three
edges selection for the Homaifar and Guan’s
matrix representation.

5. Computational Results
We used instances, generated with

random uniform distributions, with different

5

sizes and previous known optimal solutions
to test different values for each parameter,
trying to improve our algorithm performance.

We tested populations with 10, 15, 20 y
25 individuals in each representation to select
population size. Solution remained similar
for larger sizes while the CPU time increased
enormously. We tested probabilities of 50%,
60%, 70% and 80% for vector and matrix
representations in Crossover; and 1%, 2%
and 3% for matrix representation and 3%, 5%
and 7% for vector representation in Mutation.

Best results for vector representation,
were obtained with a population size of 20
individuals, modified crossover operator
(OX) with a probability of 70%, and the
insertion and three edges selection operators
for mutation with a probability of 7%.

Best results for the Homaifar and Guan’s
matrix representation, were obtained with a
population size of 10 individuals, insertion,
reciprocal change and three edges selection
with a crossover probability of 80% and a
mutation probability of 1%. We used a

random crossover operator in each instance
(each operator was applied in approx. 1/3 of
the complete set). Mutation operators were a
great source of diversity here.

We tested 10 instances to get the average
of the relative error. The optimal values were
obtained with CPLEX. We reported the
relative error between the best solution found
by our genetic algorithm using 50,000
generations and the real optimal value.

Table 1 shows relative errors, for vector
and matrix structures. For 50,000
generations, we used probabilities of 0.5, 0.6,
0.7 and 0.8. For 100,000 generations we only
used 0.7 in vector case and 0.8 in matrix
cases, the probabilities that produced the best
results for the 50,000 generations cases.

We did the same computational tests for
the maximization case with randomly
generated instances. The best crossover
probabilities were 0.7 for the vector
representation and 0.8 for the matrix
representation. .

Crossover Vector Representation Matrix Representation
Probability 0.5 0.6 0.7 0.8 0.7 0.5 0.6 0.7 0.8 0.8

Cities Generations: 50,000 100,000 Number of Generations: 50,000 100,000
20 0.1217 0.1006 0.1086 0.1157 0.0821 0.0833 0.0682 0.0824 0.0484 0.0470
40 0.1312 0.1145 0.1580 0.1201 0.1572 0.1345 0.1528 0.1412 0.1368 0.1302
60 0.1864 0.2177 0.1980 0.2217 0.1830 0.2627 0.2647 0.2441 0.2814 0.2298
80 0.2404 0.2585 0.2414 0.2499 0.2052 0.3170 0.3466 0.3385 0.3286 0.3145

Table 1. Crossover Probability and Relative Error

We used the number of iterations that
helped us to reach the optimum value with
those parameters. Table 2 has the average
number of iterations for every ten instances.

Number of generations has a greater
impact in the vector representation while it is
not affecting too much the performance in
the matrix case. Matrix representation has a
better performance for problems with a small
number of cities and a worse performance for
instances with a big number of cities.

We used 50,000 generations, and a
crossover probability of 0.7 and 0.8 for the
vector and matrix chromosome structures.

Maximization instances can be solved
with very little relative errors, while
minimization instances produced bigger
relative errors. In both cases, the results were
better with the vector representation for
examples with more than 20 cities.

Number of iterations has a bigger
correlation with the number of cities in the
matrix representation, while relative error is
strongly dependent of the number of cities.

In cases with a high correlation
coefficients between the number of cities and
the number of iterations needed to approach
the best solution, we can use minimum

6

squares to relate number of cities with
‘advised’ number of iterations to solve the
problem and to know in advance the relative
error expected.

For the Maximization type, the best
crossover probabilities were 0.7 for the
vector representation and 0.8 for the matrix
representation. Relative errors for each
problem type are in Table 2.

Our results show that data structure, size
population and crossover and mutation
operators and its specific probability, play a
very important role in the solution of TSP
with genetic algorithms. This research can be
seen as another step to determine the impact
of chromosome structures in the quality of
the solutions and the CPU time needed to
solve the asymmetric TSP.

 Vector Representation Matrix Representation

 Minimization Maximization Minimization Maximization
Cities Iterations Rel..Error Iterations Rel. Error Iterations Rel. Error . Iterations Rel. Error .

20 28509 0.0821 6913 0.0036 8902 0.0484 11471 0.0135
40 17679 0.1572 26861 0.0090 37707 0.1368 39871 0.0252
60 42757 0.1830 37912 0.0111 38126 0.2814 40988 0.0651
80 47486 0.2052 47832 0.0145 47117 0.3286 49549 0.0757

Correlation 0.8686 0.9224 0.8941 -0.0597 0.9196 0.9828 0.8692 0.9762
Table 2. Iterations and Relative Error

References
[1]Aho, A., Hopcroft, J., and J. Ullman,

Data Structure and Algorithms, Addison
Wesley Longman, 1998.

[2]Chambers, L., Practical Handbook of
Genetic Algorithms, New Frontiers Vol.
II, CRC Press, Inc, 1995.

[3]Davis, L., Applying Adaptive Algorithms
to Epistatic Domains, Proc. Int. Joint Conf.
on AI, 1985, pp. 162-164.

[4]Fox, B. and M. McMahon, Genetic
Operators for Sequencing Problems in
Rawlins, G., 1991, pp. 284-300.

[5]Garey, M. and D. Johnson, Computers
and Intractability, W.H. Freeman, 1979.

[6]Gass, S., Encyclopedia of Operations
Research and Management Sciences.
Kluwer Academic Publishers, 1997.

[7]Goldberg D. and R. Lingle, Alleles, Loci
and the TSP, Proc. First Int. Conf. on GA,
Lauwrence Erlbaum Asociates, Hillsdale,
NJ, 1985, pp. 154-159.

 [8]Grefenstette, J., Incorporating Problem
Specific Knowledge into Genetic
Algorithms, Proc. Int. Joint Conf. on AI,
1987, pp. 42-60.

[9]Homaifar, A. and S. Guan, A New
Approach on the Traveling Salesman
Problem by Genetic Algorithm, Tech.
Rep., N.Carolina A&T State Univ, 1991.

 [10]Jog, P., Suh, J. and D. Gucht, The
Effects of Population Size, Heuristic
Crossover, and Local Improvement on a
Genetic Algorithm for the Traveling
Salesman Problem in Schaffer, 1989, pp.
110-115.

[11]Michalewicz, Z., Genetic Algorithms +
Data Structures = Evolution Programs.
Springer-Verlag, 1996.

[12]Oliver, I., Smith, D. And J. Holland, A
Study of Permutation Crossover
Operators on the Traveling Salesman
Problem, Proc. Second Int. Conf. on GA,
Lawrence Erlbaum Associatess, Hillsdale,
NJ, 1987, pp. 224-230.

[13]Rawlins, G. (1991). Foundations of
Genetic Algorithms, First Workshop on
the Foundations of GA and CS, Morgan
Kaufmann Publishers, San Mateo, CA.

[14]Schaffer, J. (1989). (Editor), Proceedings
of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann
Publishers, San Mateo, CA, 1989.

