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Abstract: - Many industrial processes have multiple inputs and outputs. Such systems are known by the 
acronym MIMO. In order to properly control such processes some linear techniques like multivariable control, 
robust control, etc., have been used [1]-[3]. These techniques require a known model of the controlled process. 
However, many industrial processes are poorly known and nonlinear. Therefore, a technique to model and 
control nonlinear and partly known systems is needed. It is known that artificial neural networks, particularly 
Multi-Layer Perceptrons, partly fulfill such requirements. In this paper the gradient descent optimization rule 
is combined with a trained neural network model for the computation of the control vector [5],[7]. The 
computed control vector would drive the nonlinear MIMO system outputs to the desired operating point. For 
this purpose, a quadratic cost function is defined. The computation of a new control vector requires the 
previous computation of the gradient of the process. Since direct information of the gradient of the process is 
not available, an accurate approximation of the systems gradient is computed from the neural network model. 
The general performance of the controller is illustrated using simulations. A simple mathematical model of  
coupled tanks systems is used for this purpose [10]. 
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1   Introduction 
Conventional process control requires the previous 
deduction and characterization of a mathematical 
linear model of the process. The model must be 
accurate and reliable in order to achieve an 
acceptable control performance [1]-[3]. To produce a 
model, the control engineer needs to incorporate 
available data. This may be a difficult task since in 
many cases reliable information of the process may 
not be available or incomplete. In addition, many 
industrial processes have multiple inputs and 
outputs. Hence, the number of unknown parameters 
increases resulting in a more complex modeling task. 
The existing control methods applied to MIMO 
systems also need reliable linear models of the 
process. Some of these techniques are LQR, H∞, 
frequency domain techniques (Nyquist), etc. [2].  
When an analytical model of a systems is not 
available, alternative modeling techniques may be 
applied. Amongst these techniques are artificial 
neural networks and fuzzy logic.  
    Many neural network control approaches have 
been tested [5]-[7],[9]. Shiffman [6], illustrates an 
adaptive control using a direct plant control neural 
network using a generalized predictive control 
strategy. It is demonstrated that the proposed method 
drives the system accurately to the desired response.     
However, the training process of the neural network 

may be time consuming and it is demonstrated only 
for single input single output systems. Narendra [7], 
applied recurrent artificial neural networks to control 
nonlinear systems. Narendra approach to control is 
shown to be effective. The method has the 
inconvenience of requiring a long training time for 
the recurrent neural network controller. Narendra 
also illustrated that the method could be extended to 
MIMO nonlinear systems. 
    In this work, a multi-layer perceptron neural 
network has been used for the modeling of a MIMO 
process. This is a two layer neural network using a 
tanh() activation function. It is known that this type 
of neural network are capable to approximate the 
time response of a nonlinear system to an anticipated 
accuracy [7],[8].  
    The backpropagation algorithm has been applied 
for the training process of the neural network [6]. 
The gradient descent algorithm is used to compute 
the control vector [5]. In order to use the gradient 
descent rule, a quadratic cost function is defined 
first.  
    The cost function consist of the square of the 
difference between the desired system output and the 
neural network output plus the square of the 
difference of present and past control vectors. It is 
assumed that the minimization of the cost function 
on each iteration will reduce the control error and 



would therefore lead to an stable control of the 
MIMO system.  
    For the implementation of such control scheme it 
is necessary to carry out the computation of the 
gradient of the system. Since the system is assumed 
to be poorly known and nonlinear, such information 
is not readily available. Hence, an accurate estimate 
of the gradient of the system is produced by 
computing the gradient from the neural network 
model.  
    The results illustrated in this work were generated 
using simulations based on a nonlinear coupled tanks 
model [10]. The coupled tanks simulation supplied 
the required data used for on line training of the 
neural network model. 
    The rest of the paper is organized in five sections. 
Section two is focused on the description of the 
neural network model. Section three describes the 
mathematical development of the control algorithm 
from the proposed cost function. Section four 
illustrates the simulation results for normal control 
conditions. Section five illustrates the unstable 
operation due to poor selection of the controller 
parameters. Finally, section six are the conclusions 
of this work. 
 
 
2   Neural Network Model 
Artificial neural networks have been successfully 
applied in the modeling of dynamic systems [9]. To 
produce an accurate predictive model, the data 
supplied to the neural network must be properly 
organized. This implies the use of previous 
knowledge of the process. 
    The NARMAX (Nonlinear Auto Regressive 
Moving Average with eXogenous input) framework 
has been combined with multi layer perceptrons to 
produce nonlinear dynamical models [6],[7].  
    The neural network architecture is embedded in 
the NARMAX framework. Part of the architecture of 
the neural network (number of neurons in the hidden 
layer and the number of inputs) is defined by the 
orders of the process and the number of inputs and 
outputs.  
    In this work a multi-layer perceptron is trained 
using the backpropagation algorithm. The training 
algorithm requires appropriate excitation to the 
inputs of the process to produce meaningful data. As 
a result of the training process, the weights of the 
neural network would retain information of the 
response of the process. The predictive neural 
network model is illustrated in Figure 1. 

 

 
Figure 1, NARMAX framework for predictive model 

 
Figure 1, depicts the orders of the system as n and 
m. The model output is a prediction of the next 
output sample from the process. The accuracy of the 
model depends on the training of the neural network, 
a proper choice of n and m and a proper selection of 
training data sets. Figure 2 illustrates the 
interconnection of the neural network model and the 
process inputs and outputs. 

 

 
Figure 2, Predictive neural network model and process 

 
The variables shown in Figure 2 are, the vector of 
the process inputs ))(),...,(),(()( 21 tutututU m= , the 
vector of process outputs ))(),...,(),(()( 21 tytytytY n=  
and the estimation of the process outputs 

))(ˆ),...,(ˆ),(ˆ()(ˆ 21 tytytytY n= . In general the neural 
network model is written as  

 
))(tanh()1(ˆ PWWtY io=+                 (1) 

 
This is a two layer neural network where, oW , iW y 
P  are the synaptic weights of the output layer, the 
weights of the input layer and the input vector 
respectively.  
 
 
3   Control Algorithm 
The control algorithm is based on the direct 
application of the gradient descent rule to a quadratic 
cost function. A successful minimization step of the 
quadratic cost function would lead to the 



computation of a new control vector that would 
reduce the difference of the system output and the 
desired system output. 
    For this purpose the quadratic cost function is 
defined as. 
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Where the error sE  is defined as. 
 

)1(ˆ)1( +−+= tYtYE ds                  (3) 
 
This is the difference between the desired process 
output and the actual neural network output. The 
error cE  is. 
 

)1()( −−= tUtUE ccc                   (4) 
 
Which is the difference of the actual control vector 
and the previous control vector. It is necessary to 
indicate that it is expected that the error cE  
progressively reduces to cero during the control 
action. Finally, Q  and R  are positive semi-
definitive weighting matrices.  
    The gradient descent rule requires the 
computation of the gradient of the cost function. The 
computation of the control vector is therefore 
expressed as. 
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Here, ),...,,()( 21 mc uuutU =  is the control vector and 

cη , is the control gain. The gradient of the cost 
function is. 
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Where )ˆ,...,ˆ,ˆ()(ˆ

21 nyyytY =  is the neural network 
vector output. The gradient of the neural 

)()1(ˆ tUtY c∂+∂  is expressed in the Equation (7). 
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Here, the operation in between keys indicates an 
element by element multiplication for the two 
vectors. The input vector is. 
 

        ),...,,,,...,,()( 2121 mn uuuyyytP =      (8) 

The result of Equation (7) is represented in a matrix 
known as the Jacobian. The Jacobian of the neural 
network model is. 
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Finally, the control vector is computed by adding 
expressions from Equation (7) into Equation (9) and 
the resulting expression is substituted in Equation 
(5). As a results, the control vector is computed 
using Equation (10). 
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Here, the gradient of the cost function is combined 
with Equation (6) and the gradient descent rule as 
shown in Equation (5). This control algorithm is 
graphically represented in Figure 3 in block diagram 
form. 

 

 
Figure 3, Block diagram of the controller  

 
This diagram shows the control loop and the neural 
network training loops. It is assumed that the 
training stage took place previously to the activation 
of the control stage. The weight matrices Q  and 
R are chosen to compensate the measured output 
vector and the measured control vector. Such a 
control algorithm requires few computational 
resources for its implementation. It is also easy to 
program in  a digital computer.  
    However, it is not possible to guarantee the 
stability of the controlled process using this 
algorithm. This is due to the fact that the gradient 



descent rule may get stuck in local minima [9]. In 
addition, the gradient descent rule is an slow 
converging algorithm. Therefore, the computation of 
the control vector may not be appropriate for 
processes with a rapid response. 
 
 
4   Simulations 
The performance of the control algorithm described 
herein is illustrated by simulations, using a nonlinear 
coupled tanks model. Two tests are presented. First, 
the response of the control algorithm is simulated for 
previous defined values of the desired response 
vector. Second, the control algorithm is tested for 
disturbances. Also a description of the mathematical 
model of the nonlinear coupled tanks is presented. 
 
 
4.1 Nonlinear coupled tanks model 
The nonlinear coupled tanks process consist of a pair 
of tanks having constant transversal area and 
coupled through a tube with a constant flow 
resistance. In this case, the first tank is heated by an 
electric heater. For our purpose the liquid contained 
in the tanks is water, therefore density ρ is 1 and 
the specific heat pc is 80. 
    The inputs to the process are: temperature of the 
input flow )(tTe  indicated by 3u , input flow rate 

)(tFe  indicated by 1u  and input heat )(tQe  denoted 
by 2u . The process outputs are: the level of water in 
tank 2 )(2 tL  indicated by )(1 ty  and water 
temperature in tank 2 )(tTs  indicated by )(2 ty . It is 
assumed that both tanks are well isolated to reduce 
heat leaks. It is also assumed that the temperature of 
the input flow is not controllable and it is used as a 
disturbance input during simulations. Therefore, this 
process consist of two inputs and two outputs. The 
coupled tanks process is illustrated in Figure 4. 

 

 
Figure 4, Coupled tanks process 

 
The analytical model of the coupled tanks process is 
described by a set of four differential equations for 
the states and two expressions for the outputs of the 
process [10]. These equations are illustrated below. 
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Here the parameters 1a  and 2a  are the 
corresponding areas of transversal section of tanks 1 
and 2 respectively, 1k  and 2k  are the inverse of the 
flow resistances between the two tanks an at the flow 
output in tank 2 respectively and g  is the 
acceleration due to gravity. The process outputs are 

1y  and 2y  which represent the level in tank 2 and 
water temperature in tank 2 respectively.  
    For our simulation purpose the parameters are set 
to 1a =5, 2a =10, 1k =1 y 2k =1. Therefore, the 
parameters of the set of differential equations are 
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To simulate the response of the process a 
conventional numeric integration algorithm is used. 
Since the control algorithm is discrete, the 
integration algorithm is arranged to compute the 
states on each desired sample time. The results of the 
integration process are fed to the neural network and 
to the controller as illustrated in Figures 2 and 3. 
 
 
4.2 Control of the process  
The control algorithm in Equation (10) requires few 
adjustments in order to be applied to the coupled 
tanks. First, it is necessary to define matrices Q  and 
R . In this case both matrices are of size 2x2 and the 
elements are 
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The elements in the two matrices were chosen as a 
result of a sequence of simulation tests. The 
objective of these tests was to produced an 
acceptable response of the controlled process. A 
control gain of =cη 0.45 was selected.  
    Like in the case of the weighting matrices, the 
value of the control gain was selected for the 
purpose of illustrating an acceptable control 
performance, not an optimal control performance. 
The desired outputs of the process were defined as 

=sT  4.35 (indicated by 1y ) and =sF  6.35 
(indicated by 2y ) for the temperature of water in 
tank 2 and water level in tank 2 respectively. Figure 
5 illustrates the response of the controlled process  
 

0 5 10 15 20 25
0

2

4

6

Entradas

u1

u2

u3

0 5 10 15 20 25
0

2

4

6

Respuesta del Proceso

y1

y2

 
 

Figure 5, Response of the controlled process 
 
It can be seen that the response of the process 
reaches the desired outputs with a small overshoot. 
The inputs 1u  and 2u are the process inputs and the 
input 3u is an uncontrollable input used for the 
simulation of disturbances. In Figure 5 the controlled 
process is unaffected by perturbations and therefore, 
the input 3u  remains constant. 
 
 
4.3 Response to input disturbances 
Some simulated disturbances were applied to the 
controlled process to study its performance. The 
simulated disturbances consisted of the introduction 
of an abrupt change of the temperature of the input 

3u  of the process. It was assumed that the change in 
the temperature would produce a noticeable change 

of the output of the coupled tanks process. In this 
experiment the matrices in Equation (13) take the 
same value  as in the experiment described in section 
4.1. The disturbance is an abrupt change from 

)(tTe =5 to )(tTe =1.75. Figure 6 illustrates the 
simulated response of the controlled process  
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Figure 6, Response to a disturbance 
 
It can be seen that the disturbance produces a 
noticeable change in the outputs of the process. 
However, the control algorithm produces appropriate 
control vectors to compensate the effect of the 
disturbance. It is evident that the effect of the 
disturbance is larger at the output 1y . 
 
 
5   Stability 
The stability of the control algorithm depends on the 
appropriate selection of the elements of  Q  and 
R and the chosen control gain cη . In order to 
illustrate the stability of the process two simulated 
cases were studied. First, the effect of the parameters 
of Q  and R  is depicted on the first simulated 
results.  
    In this case both matrices were chosen to drive the 
process to an unstable operation. Second, the control 
gain cη  was adjusted to a large value such that the 
response  of the process reached an unstable regime. 
 
 
5.1 Unstable response due to Q  and R  
The matrices Q  and R  weight the effect of the 
inputs and  outputs of the process in the cost 
function. Adjusting these matrices allows to achieve 
an acceptable response of the controlled process.  
    Nevertheless, setting those matrices to incorrect 
values may cause an unstable response of the 
process. To illustrate this, both matrices have been 
adjusted to drive the process to an unstable 
condition. The resulting adjusted matrices are 
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In this case the control gain is kept constant at 

=cη 0.45. The simulation results are illustrated in 
Figure 7. 
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Figure 7, Unstable response due to poor Q and R 
 
It can be seen that the response of the controlled 
process is unstable. In order to chose appropriate 
values for Q  and R  the control engineer requires to 
carry out a previous sequence of experiments.  
 
5.2 Unstable response due to cη  
A selection of inappropriate control gain may lead to 
an unstable response or to an slow controlled 
response. A sequence of experiments will be 
required in order to select a control gain to produce a 
desired controlled response.  
    In this case, the purpose of the simulated 
experiments is to demonstrate the effect of a large 
control gain over the controlled process stability. For 
this purpose the weighting matrices in Equation (13) 
are kept unchanged. The control gain is set to 

=cη 0.6 to drive the process to an unstable response. 
The result of the simulation is shown in Figure 8. 

 

0 5 10 15 20 25
0

2

4

6

8

10
Entradas

u1

u2

u3

0 5 10 15 20 25
0

2

4

6

8

10
Respuesta del Proceso

y1

y2

 
 

Figure 8, Unstable response due to poor cη  

 
Again, the response of the controlled process is 
oscillatory but this time it is only due to a poor 
choice of the control gain. 
 
 
6   Conclusion 
The control algorithm described in the previous 
sections have been tested under simulated 
conditions. It has been demonstrated that the 
algorithms perform satisfactorily under simulated 
operating conditions. The control algorithm is easy 
to implement in computer software and requires few 
computational resources. Further trials would be 
required to validate the algorithm under 
experimental conditions.  
    On the other hand, the stability of the control 
algorithm was simply demonstrated using 
simulations. It is however necessary to develop an 
stability analysis for this algorithm. The second 
method of Lyapunov may be used for this purpose. It 
is necessary to remember that it is not possible to 
guarantee the stability of the control algorithm. The 
gradient descent rule may get stuck in local minima. 
As a result the required control vector may not be 
computed accurately. Finally, the present control 
algorithm will be combined with a fault detection 
and diagnosis algorithm to produce a fault tolerant 
control. 
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