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Abstract: - New numerical trajectory tracing method is proposed to investigate the evolution of non-linear and 
chaotic system. The method is very simple and easy for computer implementation, and also is very fast in 
calculations. This method allows us to investigate the topological changes of phase portraits even in chaotic 
states and to find quickly and precisely the bifurcation points of the system. The method was successfully tested 
with classic Rössler and Lorentz strange attractors. 
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1   Introduction 

 
During the past decades significant attention is 

being paid to the investigation of non-equilibrium and 
non-linear systems, as well as the dynamics of the 
self-organization processes and chaos in them. Self-
organizing processes appear in physical, chemical, 
biological, social and other systems, which contain 
many particles, exchange mass, energy or 
information with the environment and are far from 
the equilibrium state. Analytical investigation of such 
complicated processes is impossible; thus the main 
part belongs to numerical methods and their computer 
implementation. 
 
 
2 Trajectory tracing method 

 
The set of the phase points, characterizing the 

state of the system under the given combination of 
control parameter values, could be obtained either by 
numerical solution of non-linear differential 
equations that describes the system or by 
experimentally measured data. To determine the 
influence of the control parameters on the system 
investigated one need to process obtained phase 
portrait data with different methods [1-2], such as 
bifurcation diagrams, Poincaré section, Lyapunov 

exponents, Hausdorff dimension, correlation 
dimension and others to find the level of chaotization 
and stability of the system, analyze its behavior near 
bifurcation points, etc. But all the named standard 
methods have rather complicated algorithms and 
therefore need significant calculation time. 

We are proposing a new method to solve this 
problem and to allow rapid and accurate investigation 
of the evolution of the system depending on the 
control parameter changes. The idea of the method is 
to perform tracing of phase point trajectory. Let us 
consider the latter – the phase portrait – as the set of 
S vectors. The topology of the phase portrait is being 
defined by the order of the directions of these vectors, 
as well as sequence of their lengths. If we have n-
dimensional phase portrait, one can consequently 
define the cosine of the angle θi between the two 
consecutive vectors Vi and Vi+1 using n-dimensional 
scalar product: 
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where j means unit vector of n-dimensional Cartesian 
system. In this way one can unambiguously represent 
the phase portrait by a single trajectory tracing curve 



(TTC) – the sequence of cosθi. In the case when 
phase point trajectory is a limit cycle, i.e. running 
angle between consecutive vectors changes 
periodically with the same period, the trajectory 
tracing curve will oscillate with period T, where T is 
the amount of iterations/steps between two points 
with the same topological position. If period doubling 
bifurcation occurs, one can note the doubling of the 
period T of the tracing curve, etc. Therefore 
trajectory tracing method could be used to observe 
the topology changes with changes of control 
parameter value, providing us with the information 
about ordered and chaotic states of the system as well 
as the type of transitions between them. 
 
 
3   Results and discussion 
 
      Trajectory tracing method was checked for 
classical chaotic systems:   
 
Rössler attractor [3] (Fig. 1) 
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Lorentz attractor [4] (Fig. 2) 
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       In the figures we have presented the plot of so 
called trace value, i.e. renormalized cosine values as  
lg[ (105 - 10) · ( 1 – cosθi ) + 10 ], because the original 
cosine values are very small and moreover, have 
different order of magnitude, so we need to make this 
or similar transformation to emphasize the details of 
the curves. Cosine is being substracted from the unity 
to avoid its negative values. Tracing depth represents 
the phase point number in the phase portrait and in 
our case corresponds to different values of 
independent variable t. To obtain clear patterns it is 
necessary to omit some initial data points, when 
phase trajectory tends to attractor but does not lie on 
it. This initial number is referred as zero tracing depth 
in our figures. The increase of tracing depth 
corresponds to increase of independent variable t with 
integration step h, which is given on the figure 
captions.  Let us note that h defines the smoothness of 
the phase trajectory and the trajectory tracing curve.  
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FIG. 1. Trajectory tracing curves for Rössler 
attractor: a) µ = 3.000, b) µ = 3.875, c) µ = 4.438,  
d) µ = 8.062.  Other control parameters: α = 0.2,  
β = 0.2. Integration step h = 0.05. 
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FIG.2. Trajectory tracing curves for Lorenz attractor: 
a) r = 98.125, b) r = 113.75. Other control 
parameters: σ = 6, b = 2. Integration step h = 0.01. 
 
        It is clearly seen that the two attractors have 
different distinctive kinds of trajectory tracing curves, 
which are specific for the given system. Ordering 



leads to simple TTCs while chaotization of the 
system adds to it new peaks, but the overall picture 
represents the same system-specific pattern. For 
example, sharp peaks for the Rössler system 
correspond to the upper loop of the phase portrait, 
that does not lie in (x,y) plane. Therefore trajectory 
tracing curve gives us the information about the 
system topology, namely about the order of 
movement of phase point within the attractor. Period 
doubling bifurcations clearly mark themselves by 
period doubling of the TTC (Fig. 1 (a,b), Fig. 2 (a,b)), 
allowing us to define the period by analyzing just one 
dependence instead of n-dimensional phase portrait.  
      To investigate the evolution of the phase portrait 
of non-linear system, one should build the set of 
trajectory-tracing curves for different values of 
control parameter. The calculated data are presented 
in the Fig. 3. The tracing values are represented by 
color – darker areas correspond to smaller values, 
lighter – to greater ones. One can see that the 
characteristic TTC pattern is observable in all the 
region of control parameter changes.  From the figure 
it follows that Rössler attractor (Fig. 3a) is more 
ordered system – the TTC pattern is simple and 
undergoes the multiplication of the peaks. The 
bifurcation points correspond to the values of control 
parameter, when new peaks arise on TTC. Chaotic 
states appear from the ordering ones by successive 
period doubling bifurcations – hence the system 
obeys the Landau-Hopf evolution model. Lorenz 
attractor (Fig. 3b) shows chaotic behavior, as his TTC 
are shifted randomly. These changes could be 
explained by the changes of topology of the phase 
portrait – phase point changes the order of the 
movement over two petals of attractor. Ordered states 
with simple TTC appears seldom and are rapidly 
followed by chaotic ones. That is characteristic to 
Pomo and Manewill model of intermittence of 
ordered and chaotic states.  
      Therefore the data obtained with trajectory 
tracing allow us to investigate qualitatively the 
evolution of the states of two classical strange 
attractors as well as to define the bifurcation points.  
 
4   Conclusion 
 
    Proposed trajectory tracing method is the powerful 
and simple way to obtain information about phase 
portrait topology of non-linear system and to 
investigate its evolution with changes of control 
parameter. Calculations performed for classic strange 
attractors proved its accuracy, allowing us to use it 
for different problems of non-linear, chaotic and self-
organization systems. 

 
 

 
 
FIG. 3. Evolution of trajectory tracing curves for  
a) Rössler attractor and b) Lorentz attractor 
depending on the changes of their control parameters 
µ and r. Values of other parameters are given in 
captions for figures 1 and 2. 
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