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Abstract: - Electrical-capacitance tomography (ECT) is a novel technique for the non-invasive internal
visualization of industrial processes such as mixing, separation and multiphase flow, involving electrically non-
conducting mixtures. One of the most promising potential applications of ECT is the determination of the
amount of gas, oil and water produced by an oil well. The principle of ECT is to place a ring of between 8 and
16 adjacent electrodes (known as the sensor) around a particular cross-section of the process vessel or pipe
(which must have insulating walls in that area), and to measure all the inter-electrode capacitances. The
measurements are then used to generate an image of the electrical permittivity variations (reflecting the mixture
composition) inside the sensor through a suitable inversion algorithm. In this work, a new algorithm based on a
set of integral equations, which are equivalent to the differential model formulation, is presented.  Using this
integral relationships, the problem of identifying the unknown permittivity reduces to solving a quadratic
optimization problem with quadratic constraints, for the coefficients of the expansion of the permittivity with
respect to an orthonormal base conveniently chosen in a Sobolev space of functions defined in the sensor cross-
section.
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1   Introduction
Oil wells typically produce not just oil, but a complex
multiphase mixture having variable amounts of oil,
gas and water. The determination of the quantity of
each component actual being produced by each
specific well is of the greatest importance for the
efficient exploitation of the reservoirs. The
conventional way of doing this is by separating the
mixture and measuring each individual component
using single-phase flowmeters. However, the three-
phase separators needed are excessively bulky and
expensive. As an alternative, multiphase flow
measurement techniques that do not require mixture
separation have emerged in the last decade [7].
Among the most promising approaches currently
under investigation is one based on multiphase flow

visualization using tomographic methods [2], in
particular electrical-capacitance tomography (ECT).
The main advantage of the tomographic methods lies
in their inherently non-invasive and flow-regime
independent operation.
     ECT is an emerging technique aimed at the non-
invasive internal visualization of electrically non-
conducting mixtures in industrial processes like
mixing, separation and multiphase flow [10,11]. Only
the application to flow imaging will be considered
here. The basic principle of this method is to place a
sensor containing an array of between 8 and 16
contiguous sensing electrodes around the pipe
carrying the process fluids, at the cross-section to be
investigated (see figs. 1 and 2). The pipe wall should
be electrically non-conducting in the zone of the



electrodes. The electrodes are typically 10 cm long.
The sensor also has a couple of cylindrical end guards
adjacent to the electrodes and an outer cylindrical
metallic screen (not shown in fig.1) covering the
whole thing, all of which are always kept at an
electric potential of zero volts. The sensing electrodes
are connected to an apparatus that allows all the
mutual capacitances between the different electrode
pairs to be measured, and from this set of
measurements the electrical permittivity distribution
inside the sensor is obtained using a suitable
inversion algorithm. The permittivity distribution
reflects the spatial arrangement of the phases in the
flow. Image reconstruction can thus be regarded as an
inverse permittivity problem.

cylindrical guards

sensing electrodes

Fig.1 12-electrode sensor

Fig.2  Cross-section of sensor

     For 2-phase flows like gas-oil, the permittivity
distribution directly determines the distribution of
each phase, whereas for 3-phase ones like gas-oil-
water, the distribution of an additional parameter (i.e.
conductivity, etc.) must be obtained first through a
different tomographic modality in order to resolve
each phase distribution.
     To measure the mutual capacitance Ci, j between
electrodes i and j, a sinusoidal voltage of magnitude
V is applied to electrode i (source) keeping the rest at
zero potential, and the charge Q induced on electrode
j (detector) is measured. Ci, j is then given by

j

i
ji Q

V
C =,                            (1)

     Because Ci, j = Cj,i, there are only n = ½ N (N - 1)
independent mutual capacitance values, where N is
the number of electrodes. For a 12-electrode sensor
n = 66.
     The use of the cylindrical guards at the ends of the
sensing electrodes (and assuming that the phase
distribution changes slowly in the axial direction)
allows the sensor to be represented by a two-
dimensional (2-D) model [8] like the one shown in
fig.2. Assuming that the flow changes negligibly
during the time required for one set of 66
measurements, and that the frequency of the
excitation voltage is so small that the corresponding
wavelength is much larger than the sensor
dimensions, a static model can be considered.

2   Problem Formulation
The forward problem is to determine the mutual
capacitances Ci, j given a known permittivity
distribution inside the pipe. The inverse problem
involves finding an unknown permittivity distribution
inside the pipe based on the knowledge of all the
½ N (N - 1) mutual capacitances Ci, j (note that in the
pipe itself and in the area between the pipe and the
screen the permittivity distribution is known).

2.1 Mathematical model
The sensor is modeled (fig.3) as a dielectric region Ω
made of three subregions: a circle Ω1 and two
adjacent concentric rings Ω2 and Ω3, representing the
interior of the pipe, the pipe wall and the area
between the pipe and the screen, respectively. The
electrodes, being very thin and having very small
gaps between them, are modeled as equipotential
surfaces (lines in the 2-D model) covering the entire
boundary between Ω2 and Ω3. The screen is modeled
as an equipotential line on the outer perimeter of Ω3.

Ω 1

Ω 2

Ω 3

R3

R2

R1

Ω

Fig.3  Sensor model



     Mathematically we have Ω = Ω1 ∪  Ω2 ∪  Ω3

where
Ω1 =  {z = (x,y) : |z| < R1 }                     (2)
Ω2 =  {z = (x,y) : R1 < |z| < R2 }             (3)
Ω3 =  {z = (x,y) : R2 < |z| < R3 }             (4)

     Each one of the subregions Ωi (i = 1,2,3) has an
electrical permittivity εi(x,y). For i = 2,3 the function
εi(x,y) has a known constant value εi, whereas it is
unknown for i = 1.
     We shall consider that electrode i lies on the arch
Si defined by
Si = {z=(x,y) : |z| = R2, 2π(i-1)/N ≤ arg(z) ≤ 2πi/N }(5)
     We shall denote by V (i)(x,y), i = 1,2,..,N, the
potential produced in Ω when
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and also ε(x,y) = εj(x,y) if (x,y) ∈  Ωj (j = 1,2,3) and
εj(x,y) is constant εj for j = 2,3.
     We shall suppose that
Vj

(i)(x,y) = V (i)(x,y) if (x,y) ∈  Ωj (j = 1,2,3).
     In this case, for V1

(i)(x,y), V2
(i)(x,y) and V3

(i)(x,y) we
have that
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on |z| = R1, where 1n  is the exterior normal unitary
vector to the circle |z| = R1.
     Additionally to equations (8) and (9), we have
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2.2 The inverse problem
In what follows, our model will be determined by the
boundary value problem (7) - (13). We can describe
the inverse problem as follows:
     Given ½ N (N - 1) values Ci, j (i, j = 1,2,…,N)
(i < j), of the mutual capacitances between the

electrodes Si and Sj, determine approximately the
value of ε1(x,y) using the model (7) - (13).
     This problem is called inverse of the direct
problem that consists in calculating the solution
V (i)(x,y) of the boundary value problem (7) - (13) and
the mutual capacitance values Ci, j, for a known
permittivity ε1(x,y).
     The direct problem is a well posed problem in the
Hadamard sense and is numerically stable [4], but the
inverse problem is an ill posed problem and is
numerically unstable. In fact, if we don’t have a
regularized algorithm [3] for the reconstruction of
ε1(x,y), small errors in the data may produce a large
error in the reconstructed solution. On the other hand,
the numerical discretization of the problem can also
lead to significant deviations in the calculation of
ε1(x,y). We will propose an algorithm that will take
into account the ill-posedness and the numerical
instability in the solution of the inverse problem.
     The mutual capacitance values are given by
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where 2n  is the exterior normal unitary vector to the
circle |z| = R2 and K is a constant with units of inverse
potential.
     We shall observe that is possible to obtain from
(14) the relation
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where −
jS  and +

jS  denote the arc of jS  intercepted

with the domains 3Ω  y 2Ω  respectively.
     The fact that the function V3

(i) is decoupled in the
model (7) - (13) and satisfies the Dirichlet problem
given by (9) and (13), means that we can calculate
V3

(i) independently, which allows us to obtain the
value of the right-hand side of (15) from the
knowledge of the mutual capacitance values
measured experimentally Ci, j. For that reason we will
denote
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We will consider an equivalent problem to the
inverse problem as follows:
     Given ½ N (N - 1) values ci, j (i, j = 1,2,…,N)
(i < j), obtained using (15) and (16), determine
approximately the value of ε1(x,y) using the model
(7) - (13).



3   Problem Solution
From now on we will consider that the solution V3

(i) is
known. In the scheme to the solution we will
introduce several auxiliary functions whose analytical
or numerical calculation can be constructed
independently.

3.1 Fundamental Relations
To construct the algorithm for the solution of the
inverse problem we have first to find a set a
relations between the functions V1

(i), V2
(i) and ε1,

that allows to obtain 1ε   approximately from the data
{ci, j}, i, j = 1,2,…,N,  (i<j) given by (15) and (16).
     We will classify the relations in two different
types:

(a) Those that allow us to obtain V2
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|ξ| = R1 are the restriction of a harmonic function
in 2Ω  that satisfies the boundary conditions

(12) in |ξ| = R2.
(b) Those that allow us to obtain simultaneously

V1
(i), ∇ V1

(i) and 1ε  of an approximately manner
from the minimization of a objective functional
in such way as to satisfy equation (7) and the
boundary conditions (11) and (10), taking into
account the a priory information that we have
about ε1(x,y) in terms of bounds.

     If we apply Green's formula to the Laplace
operator in 2Ω  and the functions V2

(i)(ξ) and N(z,ξ),
where

     ; )(),( ξδξ −=∆ zzN 2, Ω∈ξz    (17)

  0),( =
∂
∂ ξz
n

N

z

     in    21      , Ω∈= ξRz       (18)

 0),( =ξzN  in   22      , Ω∈= ξRz       (19)

δ(z - ξ) being a Dirac's delta function, and we take the
limit when ozz →  with |zo| = R1, then we obtain for

i = 1,2,…,N
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where |ξ| = R1 and |ξ1| = R2, which express the
relation that must exist between the boundary values

of a harmonic function in 2Ω  and its normal

derivative in  |ξ| = R1, for the boundary condition (12)
to be satisfied in |ξ1| = R2.
     Now, we consider the boundary problem
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with 1     Rz < .

     From (21) and (22) and the boundary conditions
(11) we obtain
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with 1Rz < .

     If we apply Green's formula to the function )(
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     If instead of v in (24) we take the Green's
functions
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that correspond to the Dirichlet and Neumann

problems in 1Rz < , and taking into account

relations (20) and (23) we have
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     Relation (20) is of type a, whereas (23), (25) and
(26) are relations of type b.

3.1 Algorithm for the solution the inverse
problem

3.1.1   Step 1

The function )(
2

iV  can be written as the Fourier
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     From equation (31) we can obtain the Fourier

series for )(
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     We can observe that the relations (32), (33) and
(34) are the maximum amount of information that we
can get from the boundary conditions (12) because
the right members of these relations are, except by

the factor 1/π, the Fourier coefficients of ),( 1
)(

2 θRV i

with respect to the trigonometric system in
)2,0(2 πL . Similarly (35) is the maximum of

information that we can obtain from the data (16).
     Relation (32) - (35) suggest the following
problem:



3.1.2   Problem 1
For each fixed i = 1,…,N, we have to solve the linear
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     Using these coefficients in equation (31), we

obtain an approximation of ),( 1
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only the information from the boundary condition
(12) and the data (16).

3.1.3   Step 2
We will use the expressions (23), (25) and (26) to
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where the functions

ξ
ξ ξ

τξ ds
z

Rx

n

V
zf

R

i

i 2
1

1

)(
2 cos

)()(
1

−
−

∂
∂

= ∫
=

       (44)

ξ
ξ ξ

τ
ξ ds

z

Ry

n

V
zg

R

i

i 2
1

1

)(
2 sin

)()(
1

−

−
∂

∂
= ∫

=

         (45)

∫
=

+
∂

∂
=

1

)()(),()(
1

)(
2

R

i

i

i zhds
n

V
zFzF

ϕ
ϕϕϕ     (46)

∫
=

+
∂

∂
=

1

)(),()(
1

)(
2

R

i

i

i ads
n

V
zGzG

ϕ
ϕϕϕ       (47)

     The functions )(  ),,(  ),,( zhzGzF iϕϕ  and the

numbers ia  are defined by (27) - (30). The norm

considered in the functional (43) is the norm in

)( 1
1 RzH < .

     From the fact that ),(1 yxε  are lower-bounded by

a strictly positive constant, it is easy to see that

)( 1
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1 RzHV i <∈ . For that reason we look for
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where { } ∞
=1)( kk zW  is an orthonormal basis in

)( 1
1 RzH <  and the number M will be chosen

latter.
     Putting the expression (48) in the functional (43),
we obtain a new functional that depends on the
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     If we suppose that ),(1 yxε  satisfies

max1min ),(0 εεε ≤≤< yx , then from (23) we

obtain N2  restrictions for the unknown coefficients
)(i

ka , which give origin to the following problem:

3.1.4   Problem 2(i)  (i = 1,…,N)
Find the minimum of the quadratic functional
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   ⋅  denotes the Euclidean norm of  a  vector

in MR ,    ( ),)(i
jki fF =     ),(  ),( )()( i

jki
i

jki BA βα ==

)jk(DD =  y )( jkNN =  are matrices of order

MM × , where Mkj ≤≤ ,1 ,  Ni ,,1!= . The

coefficients ,)(i
jkf  ,jkD , jkN  are the Fourier

coefficients in )( 1
1 RzH <  of the functions

)()()()( z
x

W
zgz

y

W
zf k

i
k

i ∂
∂

−
∂

∂

)(),()()(
1

zFdzdWzW ik

R

k −∇⋅∇− ∫
<

ξξξ ξ
ξ

ξ  and

)(),()()(
1

zGdznWzW ik

R

k −∇⋅∇− ∫
<

ξξξ ξ
ξ

ξ

with respect to the orthonormal system { } M

jj zW
1

)(
=

.

     This basis can be taken in such a way that for

some coefficients jγ  we have that { } ∞
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an orthonormal basis in )( 12 RzL <  [4]. Therefore,
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jG  are the Fourier coefficients in

)( 1
1 RzH <  of the functions )(zFi  and  )(zGi ,

defined by (46) and (47), with respect to the
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     In order to obtain the solution of the problem (2i)
in a numerically stable form, we must apply some
regularization algorithm (this will be the subject of
future works).

3.1.5 Step 3
When the problems 1 and (2i) are solved, we obtain

approximate values for )(
1

)(
2 ξ

n

V i
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 in 1R=ξ  and
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     Using expression (23) we can obtain the
approximation to ),(1 yxε . So that this expression

will not depend on ,,,1 Ni !=  we will suppose that
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     If we have the partition ( )M

kk

~

1=ω  of ,1Rz <  then

expression (53) can be used to obtain an average

value k
1ε  of ),(1 yxε  for each element of the

partition.
     It is possible to prove that we can take MM ~=
and equal to the maximum number of elements of the
partition in which each component kω  is that the

change of k
1ε  in kω  can be detected by the

instrument used to measure the mutual capacitances.



4   Conclusion
Obviously the function )(

2
iV  depends implicitly in

nonlinear way on the unknown permittivity ),(1 yxε ,

and, therefore, obtaining ),(1 yxε  from the
measurements (16) consists formally in solving the
nonlinear equation

CA
"

=)( 1ε
where the A  operator acts on a space of functions

defined in 1Ω  and takes the values on 2/)1( −NNR .
     The general method to solve this kind of problem
is to discretize the operator A  into an operator A~

acting in 2/)1( −NNR  on itself, and after that
minimizing the functional

obsCA
"

−)~(~
1ε                        (54)

on a set vectors 1
~ε  that correspond to an approximate

representation of the function 1ε , and where obsC
"

corresponds to the vector of data { }ijc  obtained as a

result of the measurements of the mutual capacitance
and the formulas (15) and (16) (see [1], [6], [7], [8],
[9]).
     The problem in considering the functional (54) is
that it is a nonlinear functional that can have multiple
extreme points, and, according to (14), (15) and (16),
in the definition of A~  appears implicitly an ill-

posedness due to the derivatives of )(
2

iV  involved in

the definition of { }ijc , and it is well known that the

process of derivation is an ill-posed problem and
numerically unstable.
     To avoid these difficulties we have developed an
algorithm in which the problem of identification of

),(1 yxε  reduces to the solution of linear systems

equations and least-squares problems with quadratic
restrictions.
     The advantages of this method with respect to the
traditional minimization of the nonlinear functional
(54) are the following
•  The traditional method is fully iterative, while in

the proposed direct method we have to do some
calculations only one time.

•  The proposed procedure allows calculating the
accumulated error in each step more efficiently.
This error is composed basically of the truncation
error that we have when we approximate the
series by a partial sum, plus the error coming from
the measured data.

•  In the nonlinear functional case (54), the
regularization techniques employed have only an
empiric character, because there are no theoretical
results applicable.
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