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Abstract: - The polarisation ratio of the linearly polarised light backscattered by fly ash particles is indicative of the 
carbon content. The determination of this parameter is useful to characterise the efficiency of coal burning furnaces. 
The main aim of this work is to design a single optical probe to measure the polarisation ratio.The probe has been built 
that can be bolted onto a furnace duct, and it has been tested on a wide range of ashes. A neural network analysis has 
also been explored for predicting carbon content. 
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1 Introduction 
Fly ash is a finely divided powdery substance produced 
in the furnaces of pulverised-coal-fired power plants. It 
is recovered from the flue gases leaving the furnace area 
by electrical precipitators or other pollution-control 
equipment. The main elemental component of fly ash is 
silicon, but it also contains several others such as 
aluminium, iron, calcium and magnesium.  There will 
also be some and unburned carbon. The concentrations 
of the different elements are dependent on the type of 
coal, whereas the amount of carbon also depends on the 
operating conditions of the furnace. The carbon content 
is normally in the range 2 to 15 wt.% carbon [1]. 
Excessive amounts of residual carbon represent a 
significant loss of energy and low combustion 
efficiency.  A high carbon content also presents 
difficulties with disposal of the ash. 
 
    Methods that are generally used to determine the 
carbon content of fly ashes may be classified into two 
categories: intrusive and non-intrusive.  The former 
require collection of fly ash samples followed by 
subsequent analysis.  Examples include Thermo-
Gravimetric Analysis (TGA,) Loss On Ignition (LOI) 
and burn out in a furnace followed by measurement of 
the CO2 evolved [2]. Measurement of the carbon content 
can also be accomplished; for example, by measuring 
the temperature differential of an excess energy 
absorber in the form of water before and after the fly ash 
is exposed to microwave radiation [3]. 
 

    Another method is based on the photoacoustic effect 
[4].  In this, ash is sampled into a cavity and 
periodically heated at an acoustic frequency by 
absorption of a modulated laser beam.  In turn heat is 
transferred to the gas which expands and cools at the 
acoustic frequency.  The resulting pressure changes are 
monitored by a microphone, the signal being 
proportional to the carbon content of the ash. Finally, 
there are optical methods that measure the carbon 
content of fly ash samples based on reflectivity in the 
infrared [5]. 
 
    Non-intrusive methods do not need a sample to be 
collected. They have the advantage of providing an on-
line real time measurement during the combustion 
process, without causing significant disturbance.  In 
early work Card and Jones [6] investigated the 
combustion of coal in a drop tube furnace, using light 
scattering to analyse the particle properties.  A variable 
length drop tube furnace was constructed in which 
combustion could be pursued under plug flow 
conditions as a function of residence time.  Particles 
were examined individually as they emerged from the 
bottom of the furnace.  Horizontally polarised light 
from a 25 mW argon ion laser at a wavelength of 0.488 
µm was scattered by the particles and collected at two 
angles, namely 0 and 160 degrees.  The forward scatter 
(0o) intensity was used to obtain particle size.  The 
backscattered light at 160o light was analysed by 
separating the vertical and horizontal polarisation states.  
The ratio of these two polarisations (cross-polarisation 
ratio) was found to provide an almost linear correlation 



with the carbon content of the ash.  It was further shown 
that this ratio was insensitive to particle size. 
 
    Bonanno et al. [7] proved a correlation between 
emissivity and residual carbon content for coal-fired 
plants. The time required for a measurement, using a 
FT-IR spectrometer, was a few seconds.  A capacitive 
method has also been developed [8] in which the fly ash 
passes between two electrodes and the change of 
capacity is used as a measuring signal.  It is assumed 
that the bulk density of the ash in the measuring 
chamber is approximately constant, although 
compensation for variation in the bulk density is 
possible using a weighing device. 
 
    Nuclear measurements of carbon in fly ash have also 
been investigated. These either employ scattering of 
gamma rays or of neutrons [9]. 
 
    Perhaps most promisingly, a microwave resonance 
method has been proposed [10].  Here a microwave 
signal is transmitted through or reflected from the 
particle cloud and the attenuation and phase shift is 
measured.  A frequency is chosen which corresponds 
with a particularly absorption in carbon.  In this way it 
is claimed that unburned carbon content is obtained with 

good accuracy, independently of any other elements that 
are present. 

 
    This paper explores further development of the 
method of Card and Jones [6].  The principle is that 
non-spherical particles introduce cross-polarisation into 
the scattered light.  In the case of fly ash this may arise 
from two sources: scattering from the irregular surface 
and multiple scattering on any internal structure, since 
ash is essentially glass-like.  It is found that the presence 
of absorption reduces cross-polarisation, and this can be 
explained in terms of a reduction of the internal multiple 
scattering. 
 
    An instrument has been built that can be bolted onto a 
furnace duct, and it has been tested on a wide range of 
ashes.  A neural network scheme has also been explored 
for predicting carbon content. 
 
2 Apparatus and materials 
Fig. 1 is a schematic drawing of the laser probe. The 
vertically polarised beam from a Laser 2000 crystal 
laser (50 mW, 532 nm, TEM00) passes to a periscope 
arrangement formed by the two mirrors M1, fixed at 45o 
to the incident beam direction, and M2.  The light enters 
and leaves the instrument via a 75 cm diameter quartz 
window with a facility to blow nitrogen to prevent dust 

accumulation.

 
 

Fig.1: Experimental set-up of the probe for polarisation ratio measurements. 
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Light scattered by the particles crossing the beam is 
collected by lens L1. The lens is mounted on a 
microscope slide with a positioning accuracy of 10 µm, 
and is adjusted to focus the radiation onto a small 
aperture.  The intersection between the laser beam and 
the image of the aperture defines the test volume.  The 
mirror M2 can be rotated to vary the distance at which 
the laser beam and image of the aperture intersect.  
Distances between 0.5 m and 6 m have been explored. 
The size of the test space depends upon the aperture 
diameter and the divergence of the laser beam.  
 

    After the aperture the scattered light is collimated by 
lens L4 and passes to the 50:1 extinction ratio 
polarising beam splitter.  The two polarised beams are 
then focused onto the two photomultipliers (EMI 9558).  
The polarisation ratio is defined to be 
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    The physical characteristics of the various optical 
elements used in the probe are listed in Table 1.

 
Mirror M1 ϕ=12.5mm, Coating:  Laser  Line Max-RTM  at 45˚  incidence, R>99% 

Mirror M2 ϕ=12.5 mm, Coating: MAXBRITETM for 0˚ to 45˚ incidence, R>98% 

Lens L1 Aspheric glass condenser φ=75 mm, f=50 mm,  ARC 

Lens L4 Aspheric glass condenser  φ=18 mm f=12 mm, no ARC 

Lens L5 Convex lens,  φ= 12 mm, f=20 mm, no ARC 

Aperture ϕ=500µm 

Polarising cube Broadband polarising cube beam splitter l=25.4 mm, ARC, 50:1 
 

Table 1  Physical characteristics of the optical elements 
(Key: ϕ - diameter; f – focal length; l – side of cube;  

ARC – Anti-reflection coating; R – reflectivity)
 
A picture of the probe is presented in Fig. 2.   

 

 
 

Fig. 2  a picture of the probe used for measuring  carbon in ash 
 
 



    For the measurements, Powergen supplied samples of 
ashes from 12 different coals together with their 
proximate analyses. These samples were then partially 
burned to produce 63 ashes of varying carbon content and 

of widely different mineral content. The carbon content 
by mass was determined by thermo-gravimetric analysis 
(TGA).  The properties of the ashes are given in table 2.

 
Ash carb. cont. Fe Al Si Ca Mg Ti 

BET96042 4.90% 13.70% 28% 46.40% 1.30% 1.70% 1.20% 
ELC990111 9.10% 7.40% 22% 54.50% 2.20% 2.30% 1.00% 
LAC980624 9.20% 7.10% 25.80% 52.60% 3.60% 1.10% 1.20% 
FOR98062 10.10% 3.70% 28% 45.70% 6.90% 2.20% 1.50% 
ATC981207 10.10% 3.40% 28.90% 41.80% 8.30% 2.20% 1.80% 
KNP98092 12.10% 5.70% 26.10% 46.80% 3.20% 1.50% 1.20% 
ELC97050 12.60% 6.80% 22.30% 51.10% 3.20% 1.60% 1% 
LAJ98062 13.10% 6.10% 21.70% 50.90% 2.80% 0.70% 1% 
PRO98070 16.40% 5.50% 19.80% 45.80% 4.10% 2.50% 1% 
cyclone18 15.30% 5.30% 30.77% 52.75% 4.77% 1.68% 1.69% 
cyclone17 14.50% 5.44% 30.25% 53.11% 4.83% 1.73% 1.66% 
cyclone19 7.40% 5.37% 29.73% 53.20% 4.89% 1.80% 1.74% 
 

Table 2  Properties of the ashes used in tests
 

3 Measurements 
The behaviour of the probe was explored by making 
measurements with the test space 1 m from the lens.  The 
photomultipliers were balanced by detecting the light 
from an unpolarised source and ensuring that the 
polarisation ratio was unity.  The scattered intensity and 
applied voltages were sufficiently low that the 
photomultiplers were in the linear range. 

 
    The particles were dispersed by elutriation from a 
fluidised bed and crossed the test space via a small 
tube.  The instrument observed single particle counts 
simultaneously on the two photomultipliers, the output 
voltages being displayed on an oscilloscope. The 
polarisation ratio was calculated for each event was 
calculated from the ratio of these voltages.
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Fig. 3: Measured polarisation ratios for PMMA spheres

 
    To test the performance of the probe initial 
measurements were made on spheres of PMMA 

(polymethylmethacrylate).  For perfect spheres there 
should be no cross-polarisation, so the instrument 



should yield a ratio of one fiftieth (2%), the extinction 
ratio of the prism. 
 
    The result of the test is seen in Fig. 3.  It can be seen 
that the peak occurs at 2%, which is the expectation.             
There are a few particles with lower polarisation ratio, 

which is due to imperfection in the optics.  There are a 
significant number of particles above 2%.  This is 
expected since only perfect spheres will result in zero 
cross-polarisation.  Even with only 1% deviation from a 
sphere the influence of shape becomes very significant . 
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Fig. 4: Polarisation ratio against carbon mass fraction (%)  
for selected ashes
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Fig. 5: Polarisation ratio against carbon mass fraction (%)  
for all twelve ashes 

 
 
 
 
 
 
 
 
 
 

 
 

    For the ashes, the actual cross-polarisation is a 
function of the mineral composition as well the 
amount of carbon.  This is illustrated in Fig. 4 for a 
selection of the ashes used in this study.  In this 
diagram the measured points are not represented but 
the data are fitted by a quadratic polynomial, simply to 
show the typical variation between ashes. 



 
    Given the variation between ashes the question arises 
to what accuracy the carbon content could be determined 
if the proximate analysis were not known, as may 
generally be the case when burning coal.  An indication 
of the answer is found in  
Fig. 5, where the actual measurement points for all twelve 
ashes are shown.  The solid line is a linear fit to all the 
data and the two broken lines represent plus and minus 
one standard deviation around the fit. 
 
    The implication of this plot is that if the proximate 
analysis is not known the carbon content can be measured 
to within about ±1% carbon by mass.  This is promising, 
but it is accepted that the data set is still limited and a 
wider range of measurements would better set the range 
of accuracy. 
 
4 Neural Network analysis 
Having estimated the accuracy of carbon determination 
without prior knowledge of the mineral content, it is 
worth exploring how this improves if the proximate 
analysis is known.  A study of the polarisation ratio over 
the range of the ashes did not reveal any significant tends 
with regard to mineral content.  It was, therefore, decided 
to explore a neural network analysis to see to what 
accuracy the carbon mass fraction may be predicted for 
known mineral content. 

In recent years the use of neural networks in the 
function approximation and interpolation of data has 
become a feasible method, because the efficiency of 
algorithms and computers has increased [11]. Of 
course neural networks have many more applications 
in other areas of data processing, in non-linear control 
etc. 
 
    Of the various neural network models only general 
regression neural network (GRNN) which is based on 
the radial basis function (which has its origin in 
techniques used for exact interpolation between data 
points in multidimensional spaces) has been 
investigated in this paper. The facilities of the neural 
network  toolbox of the Matlab software (Matlab is a 
registered trademark of the MathWorks  Inc.)  have 
been used in the computation. The interpolation with 
radial basis functions presented in this paper have been 
made with a Matlab-function, which has as many 
hidden neurons as there are input-output pairs. This 
causes the interpolation function to make exact 
mapping. 
 
    The topology of the general regression neural 
network (GRNN) with two successive layers is shown 
below in Fig 6. It is similar to the radial basis network, 
but has a slightly different second layer.
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Fig. 6 Neural Network flow chart
 
 

 
 

Where a1 is the output vector from layer 1 and is 
calculated as follows: 

 
a1

 = radbas (|| IW1 - p|| b1) 
 

||dist|| 

b1 

IW 1  Input Weight 

nprod 

LW Layer Weight 

Input  

RADIAL BASIS LAYER SPECIAL LINEAR LAYER 



radbas is a transfer function with 
 

radbas(n)=e-n2 
 
a2 is the output from layer 2 which is the target 
(supervised learning): 

 
a2= purelin (n2) 

 
with purelin being a linear transfer function. 
 
n1 and n2 are neurons in layers 1 and 2, IW and LW are 
input weight and layer weight respectively.  
 
The ||dist|| box in this figure accepts the input vector p and 
the input weight matrix IW11, and produces a vector 
having S1 elements. The elements are the distances 
between the input vector and vectors IW1 formed from the 
rows of the input weight matrix. The bias vector b and the 
output of ||dist|| are combined with the MATLAB 
operation .*, which does element by element 
multiplication. 
 
    Here nprod box shown above (code function) produces 
S2 elements in vector n2. each element is the dot product 
of a row of LW and the input vector a1, all normalised by 
the sum of the elements of a1 . 
 
    The question is How does this network behave 
following an input p through the network to the output a2. 
If we present an input vector to such a network each 
neuron in the radial basis layer will output a value 
according to how close the input vector is to each 
neuron’s weight vector. Thus, radial basis neurons with 
weight vectors quite different from the input vector p will 
have outputs near zero. These small outputs will have 
only a negligible effect on the linear output neurons. In 
contrast a radial basis neurons with a weight vectors  

IWclose to the input vector p will produce a value 
near 1. If a neuron has an output of 1 its output 
weights in the second layer pass their values to the 
linear neurons in the second layer. 
Suppose we have an input vector p close to pi one of 
the input vectors among vector/target pairs used in 
designing layer one weights. This input p produces a 
layer ai  ouput close to 1. This leads to a layer 2 
output close to ti , one of the targets used for 
designing layer 2 weight (LW). 
  
    In this particular application we are dealing with a 
supervised learning, where the input vectors include 
{P, FeO2, Al, Si, Ca, Mg, Ti, K, P} and the target 
being the carbon in ash {C}. P is cross-polarisation 
ratio measured in the laboratory environment at 
Imperial College, the carbon content was measured 
using TGA technique and the rest of the above 
elements were calculated from proximate analysis 
method performed within Powergen environment.  
The neural network results were achieved within a 
maximum training periods (epochs) of  1000.  The 
network was trained with 50 of the 62 ashes, the 
remaining 12 being set aside for validation.  The 
result is shown in Fig. 7.  This would suggest that the 
neural network analysis could yield an accuracy of 
±0.05% of carbon by mass. 
 
5 Conclusions 
From measurements of the polarisation ratio in the 
light scattered by fly ash particles from a wide range 
of coals, it was predicted that the carbon mass 
fraction could be determined to within ±1% of the 
carbon content even in the absence of any 
information on the mineral content of the original 
coal.  If a proximate analysis was performed on the 
coal this could be improved to ±0.05% by the use of 
neural analysis.
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Fig. 7: Comparison of the carbon in ash predicted by 
the neural network calculation against the known value 

obtained by thermo-gravimetric analysis.
 

 
    This does represent an improvement.  However, it is 
doubtful whether it is significantly better to make it 
worthwhile performing a proximate analysis solely for 
this purpose. 
 
    A reasonably wide range of ashes was studied in view 
of the time consuming nature of the measurements.  The 
range carbon contents of the ashes covered that usually 
achieved in power station combustion.  However, while 
these results provide good guidance to the potential 
accuracy of the method, a much wider study would be 
valuable.  To achieve this, ashes from more coals with a 
wider range of carbon contents would need to be 
prepared and the data collection system would need to 
be fully automated. 
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