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Abstract: In this paper, a study of synchronization problem of hyperchaotic discrete-time systems is presented. In
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1  Introduction
Synchronization of chaotic systems has received a lot of
attention in last decade, this interest increase by practical
applications in different fields particularly in private
communication. Since the work of Pecora and Carroll [1]
different approaches are being currently proposed and
pursued [2]-[11].

The objective of this paper is to present another
scheme to synchronizing chaotic systems using the
model-matching approach. In this work we show that the
synchronization of two hyperchaotic Rössler systems is
possible from this point of view.

This paper is organized as follow. In Section 2, we
present the problem description. In Section 3, we describe
the nonlinear model-matching approach. In Section 4, we
present the synchronization of two hyperchaotic Rössler
systems. Finally, in Section 5, we give some concluding
remarks.

2  Problem Formulation
Consider a discrete-time nonlinear system described by
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where the state Xx ∈ , an open set in nℜ , the input u is

inside an open set U in mℜ , and the output y belongs to

an open set Y in mℜ . The mapping XUXf →×:  and
YXh →:  are supposed to be analytic. In addition, we

consider another discrete-time nonlinear system described
by
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where the state MM Xx ∈  (an open set in Mnℜ ), the input

MM Uu ∈  (an open set in mℜ ), and the output My

belong to an open set MY  in mℜ . Also, the mapping

MMMM XUXf →×:  and MMM YXh →:  are supposed
to be analytic.

We said the system (1) synchronize with system (2) if

( ) ( ) .       ,0 ∞→→− kkykyM                  (3)

note that in this case we consider only output
synchronization [12]. In the next section we describe the
scheme to solve (3).

3  Nonlinear Model-Matching Problem
Consider a system called the plant P described by (1) and
a system called the model M described by (2). The
compensator util ized to control the plant is a discrete-time
nonlinear system described by
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with state CC Xx ∈  (an open set in νℜ , input x and Mu

and output u. Here Cf  and Ch  are analytic mappings on a

suitable open and dense subset of MC UXX ×× . The
compensated plant (1)-(4) defines a new control system,
with input Mu , output CPy � , and state ( )Cxxx ,ˆ = ,
described by
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where
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We assume that plant (1) evolves in a neighbourhood

of an equil ibrium point 0x ; that is, around

( ) UXux ×∈00,  such that ( ) 000, xuxf = , with

( ){ }0:0 ≥= kuku  being a (constant) input sequence. For
this sequence there exists another (constant) output

sequence ( ) ( ){ }0:00 ≥== kyxhky . In the same way, let
the equil ibrium point of (2) be denoted by

( ) MMMM UXux ×∈00 , . We are interested in finding a
compensator C for the plant P which, irrespectively of the
initial states of P and M, makes the output y(k) of P
asymptotically converge to the output ( )kyM  produced by

M under an arbitrary input ( )kuM  to solve
synchronization problem described in section 2. In this
case we used the nonlinear model-matching approach
[17], [19] to obtain (3). The discrete nonlinear model-
matching problem addressed here is defined as follows.

Definition 1 (Discrete-time asymptotic nonlinear
model-matching problem, DAMMP) Given the plant P
and the model M around their respective equilibrium

points ( )00,ux  and ( )00 , MM ux , and a point

( ) ( )( ) MMM XXXXxx ×⊂×∈ 000,0   find an integer v and

a compensator C with initial condition ( )0Cx , such that

the output of the compensated plant CPy �  converges

asymptotically to the output ( )kyM  produced by any input

( )kuM  to the model M. This means finding two mappings

Cf  and Ch  such that the compensated plant satisfies the

propperty given before in some neighbourhoods 1V  of

( )000 ,, MC uxx  in MC UXX ××  and 2V  of 0u  in U.

A way to solve the above problem is to define an
output error ( ) ( ) ( )kykyky ME −= , and to choose a

control ( )ku  such that ( )kyE  is decoupled from the

model input ( )kuM  for all 0≥k , and converges
asymptotically to zero. The first point is equivalent to
transforming the DAMMP to a disturbance-decoupling
problem with disturbance measurements of an auxili ary
system [17], [19]. Such an approach also allows us to treat
the second point in such a way that the output error
depends only on the initial conditions ( )0x  and ( )0Mx ,

and not on the model input ( )kuM . To this end, let us
define the auxiliary system
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with state ( )TME xxx ,= , input vectors uuE =  and

ME uw = , and
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Note that Ew  is considered as a disturbance signal
acting on the auxil iary system. Given this system,

together with an equil ibrium point ( )000 , ME xxx =  it is
known [13]-[15] that, if the disturbance-decoupling
problem with measurement disturbance Ew  associated

with the system has a solution on E
0Ω , an open and dense

subset of MM UUXX ××× , defined around the

equilibrium point ( )0000 ,,, MM uuxx , then there exists an

analytic mapping Ey  defined on E
0Ω  with the property

that the control law.

( ) ( ) ( )( ) ( ) ( )( )kukxkwkxku ME
E

EE
E ,, γγ ==       (7)

decouples the output ( )kyE  of the closed-loop system

(6)-(7) from the disturbance ( )kwE  for every initial state

( )kxE  in an open and dense subset of MXX × contained

in E
0Ω .

In the sequel the DAMMP wil l be treated in terms of a
relative degree associated with each output components

iy  and 
iMy . Thus the following definitions are

introduced. Let 0f , 
0Mf , and 

0Ef  be the undriven state

dynamics ( )0,⋅f , ( )0,⋅Mf , and ( )0,0,⋅Ef , respectively,

and jf0 , j
Mf 0

, and j
Ef 0

 the j-times iterated compositions



of 0f , 
0Mf , and 

0Ef  with ( ) xxf =0
0 , ( ) MMM xxf =0

0
,

and ( ) EEE xxf =0
0

.

Definition 2 [16] The  output iy  of the plant (1) is

said to have a relative degree id  in an open and dense

subset iO  of UX ×  containing the equilibrium point

( )00 ,ux , if
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for all 10 −≤≤ idl , for all mj ≤≤1 , for all ( ) iOux ∈, ,
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( )( )[ ] 0,0 ≠
∂
∂

uxffh
u

id
i

j

�                        (9)

for some { }mj ,...,1∈  and for all ( ) iOux ∈, .
A similar definition is given for the relative degree of

the model (2), 
iMd , in an open and dense subset 

iMO , of

MM UX ×  containing the equilibrium point ( )00 , MM ux .
We define the input-output decoupling matrix of the

plant P as the mm×  matrix

( ) ( )( )[ ]mjiuxffh
u

uxA id
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and consider the following assumption.
 (A1) For all mi ≤≤1  and for all ( ) MME XXxxx ×∈= ,

and MM Uu ∈ ,

( )( ){ }MEE
d
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where { }ϕIm  denotes the image of ϕ .
The following theorem gives necessary and sufficient

conditions for the local solvability of the DAMMP.
Theorem 1 [17] Consider the plant (1) and the model

(2) around, respectively, their equilibria ( )00 ,ux  and

( )00 , MM ux . Suppose that the output iy  of the plant and the

output 
iMy  of the model have finite relative degree id

and 
iMd , respectively defined on iO  and 

iMO , for

i=1,...,m. Assume that assumption A1 holds. Suppose also
that the input-output decoupling matrix ( )uxA ,  in (10) is

nonsingular for all ( ) UXux ×∈, . Then the DAMMP is

locally solvable on E
0Ω  if, and only if,

iMi dd ≤ ,         mi ≤≤1                       (12)

Next we show the representation of the auxiliary
system (6) feedback by control law (7) in terms of the

plant (1) and the model (2) in different coordinate frame. 
Suppose that the plant is fully linearizable, i.e.

( )∑ −
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i i nd
1

1 . The definition of id  shows that

( ) ( )xfhxh id
ii 0,..., �  are independent functions [20] and

can be chosen as new coordinates ( ) ( ) ( )[ ]Tm xxx ξξξ ,...,1=

with ( ) ( ) ( )[ ] ( ) ( )[ ]Td
ii

T
diii xfhxhxxx i
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for i=1,…,m, defined on the subset mOOO ∩∩= ...1

locally around 0x , as follows: ( ) ( )xfhx ij
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1
0,

−= �ξ , for

all j=1,…, 1+id  and for all i=1,…,m. Let us consider the
auxiliary system (6) and the new coordinates functions
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where now ( ) ( ) ( )[ ]TEmEE xxx ζζζ ,...,1=  with
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for all j=1,…, 1+id , and for all i=1,…,m. This is indeed
an admissible choice because the Jacobian matrix

( )[ ] EE xx ∂∂ /φ  is nonsingular. By choosing

( )ME
E uxu ,γ= , the representation of the systems (2) and

(6) in the new coordinates takes the form
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From these last expressions we see that the outputs
( )kyi  of the plant differ from the outputs ( )ky

iM  of the

model by a signal ( )ky
iE  obeying the linear difference

equation. We can also identify two subsystems in the
closed-loop system (15), namely:

1. The subsystem described by the equation
( ) ( ) ( )( )kukxfkx MMMM ,1 =+ ,

which represents the dynamics of the model, and
2. The subsystem described by the equations

( ) ( ),1 * kAk iii ζζ =+       i=1,…,m,
with
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which represents the dynamics of the signals ( )ky
iE .

Since the dynamics of M can be made stable by
assumption, if we choose the control law such that all the

eigenvalues of the matrix *
iA  have magnitude strictly less

than 1, then the closed-loop system will be exponentially
stable and condition (3) holds, solving then
synchronization problem defined in sec. 2.

4  Synchronization of Rössler System
In this section we will illustrate the theoretic set up of
section 3 by means of a illustrative example.

Consider the discrete time nonlinear system  described
by
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It is known that with some parameters values ( 8.3=α ,
05.0=β , 35.0=γ , 78.3=δ , 2.0=ς , 1.0=η ,

9.1=θ ) the Rössler system (16) exhibits some
hyperchaotic dynamic [18].

Adding an input u (control law) in (16) consider the
next hyperchaotic Rössler system like a plant P described
by
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Also considered another hyperchaotic Rössler system
like a model M described by
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we considered the same value parameters in the plant P
and in the model M and in this case 0=Mu  to keep the
model (18) with hyperchaotic dynamic. The relative
degree of the plant (17) and of the model (18) are

2== Mdd , with this we assure that the model-matching
problem has solution according with (12).

To solve the model-matching problem following Sec.
3, we defined an auxiliary system according with (6)
where the output is the error between the outputs of (18)
and (17), then the output of this auxiliary system is given
by

( ) ( ) ( ) ( ) ( ).22 kxkxkykyky MME −=−=
Defining ( ) ( )kyk E=1ζ  we show the systems (17) and

(18) in a new coordinates taken the form
( ) ( ) ( )
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In this case (19) is fully linearizable (if the system is in
different form will be necessary to do another stability
analysis to assure output synchronization [21]) and then

with a proper selection of values ( )1 <ii αα  we assure

then the closed-loop system will be exponentially stable
and condition (3) holds.

With the system (19) we obtained a discrete control
law given by (7) that solved model-matching problem.
Using this control law (7) we doing the next simulations
described here:

We choose 1.0=iα  and with this value the
synchronization time τ  (the time when synchronization
was achieved) was in k=18. The initial condition of

( ) ( )kxkx M  and   were ( ) ( )1.0,2.0,1.0  and  3.0,2.0,3.0 −−−
respectively. Figure 1 shows the matching about

( ) ( )kyky M and , and also shows the synchronization error
evolution between outputs of (17) and (18),  We can see,
after some transient behavior, that synchronization is
achieved.

Figure 2 shows the error evolutions in the rest states.
Note that the control law u only assure the
synchronization of ( ) ( )kyky M and , but in this case we
have fully synchronization (synchronization in all states).
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In the next simulation we increase the value to
75.0=iα  and we observed that synchronization time τ

increase, so we can changes the synchronization time
moving the gain values iα .
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Fig.3.  Matching between ( ) ( )kyky M and , and
synchronization error ( ) ( )kxkxe M 222 −= .

Figure 3 shows the matching about ( ) ( )kyky M and , and
also shows the synchronization error evolution between
outputs of (17) and (18),  in this case the synchronization
time was in 91=τ .

5  Concluding Remarks
In this paper we have presented an approach to achieve
synchronization of hyperchaotic discrete systems via the
matching-model approach. In particular this method is
indeed suitable to synchronized two hyperchaotic Rössler
systems unidirectionally coupled, we show in this case
that fully synchronization is achieved.

In a forthcoming article we will be concerned with
increase this job using systems not fully linearizable,
systems with perturbed signals, and using nolinear control
tools to apply this approach in private communication.
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