Synchronization of two hyperchaotic Rosder systems:
M odel-matching approach®

ANA Y. AGUILAR-BUSTOS? AND CESAR CRUZ-HERNANDEZ
Electronics and Telecommunications Department,
Scientific Research and Advanced Studies of Ensenada (CICESE),
Km. 107, Carretera Tijuana-Ensenada, Ensenada, B.C., 22860,
MEXICO

Abstract: In this paper, a study of synchronization problem of hyperchaotic discretetime systems is presented. In
particular, we use a model-matching approach to synchronize two unidirectionally coupled Rosder systems.
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1 Introduction

Synchronization o chaotic systems has received a lot of
attention in last decade, this interest increase by practical
applications in different fields particularly in private
communication. Since the work of Pecora and Carroll [1]
different approaches are being currently proposed and
pursued [2]-[11].

The objedive of this paper is to present another
scheme to synchronizing chactic systems using the
model-matching approach. In this work we show that the
synchronization o two hyperchactic Rosder systems is
possble from this point of view.

This paper is organized as follow. In Section 2, we
present the problem description. In Sedion 3, we describe
the norlinear model-matching approach. In Section 4, we
present the synchronization of two hyperchactic Rosder
systems. Finally, in Section 5, we give some concluding
remarks.

2 Problem Formulation
Corsider adiscrete-time norlinear system described by

Kk +1)=  (x(k) u(k)), M
y(k) = h(x(k))
where the state x[J X , an goen set in 0", the input u is
inside an gpen set U in O™, and the output y belongs to

an gpenset Yin O™, The mapping f:XxU - X and
h: X - Y are supposed to be analytic. In addition, we
consider anather discrete-time norlinear system described

by
Xy (k +1) = fy (XM (k),UM (k)),
Vi (k) =y O (),
where the state x,, [ X,, (an gpensetin 0™ ), the input

)

uy OUy (an open set in OM), and the output ),

belong to an gpen set Yy, in O™. Also, the mapping
fu i Xy XUy - Xy and hy @ Xy - Yy are supposed
to be analytic.

We said the system (1) synchronize with system (2) if

lyw (K)-y(k) - 0, k- o 3

note that in this case we consider only output
synchronization [12]. In the next section we describe the
schemeto solve (3).

3 Nonlinear M odel-M atching Problem
Corsider a system call ed the plant P described by (1) and
a system caled the model M described by (2). The
compensator utilized to control the plant is a discrete-time
nonlinear system described by
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o Brelkr 1= fo (g (k) ik uy k)
ch(k) = he (xc () (k) u (k)

with state xc 0 X (an open set in 0V, input x and uy
and output u. Here f. and h- are analytic mappings on a
suitable open and dense subset of X.XxXxU,,. The
compensated plant (1)-(4) defines a new control system,
with input Uy, output yp.c, and state X=(x,x.),
described by

(4)

. élk(k +1) = £ (%(k).uy (k).

Yoo )= AR(K) ©

where
fcan)= ] (e »E (%) = h(x).
fc (Xc yUm )

We assume that plant (1) evolves in a neighbourhood
of an equilibrium point x%: that is, around
(xo,uo)D XxU such that f(xo,uo)z X0,  with
{u(k) =u0 k> O} being a (constant) input sequence. For
this sequence there «ists anather (constant) output
sequence {y(k) = h(xo)z yO k> O}. In the same way, let
the equilibrium point of (2) be denoted by
(xﬁ’,l,uﬁ’,I )D Xy XUy . We are interested in finding a

compensator C for the plant P which, irrespectively of the
initial states of P and M, makes the output y(k) of P

asymptotically converge to the output yy (k) produced by
M under an arbitrary input uy(k) to solve

synchronization problem described in section 2. In this
case we used the nonlinear model-matching approach
[17], [19) to dotain (3). The discrete nonlinear model-
matching problem addressed hereis defined as foll ows.
Definition 1 (Discretetime asymptotic nonlinear
model-matching problem, DAMMP) Given the plant P
and the model M around their respective equilibrium

points (xo,uo) and (xﬁ’,I ud ) and a point
(x(0),x, (0))DX°x XS O XxX,, findan integer vand
a compensator C with initial condition x(0), such that
the output of the compensated plant yp,c converges
asymptotically to the output yy, (k) produced by any input
uy (k) to the model M. This means finding two mappings
fc and he such that the compensated plant satisfies the
propperty given before in some neighbourhoods V; of

(xg,xo,uﬁ’,l) in XcxXxUy, andV, of u® inU.

A way to solve the abowve problem is to define an
output error  ye(k)=y(k)-ym(k), and to choose a
control u(k) such that yg(k) is decoupled from the
model input uy (k) for al k=0, and converges

asymptotically to zero. The first point is equivalent to
transforming the DAMMP to a disturbance-decoupling
problem with disturbance measurements of an auxiliary
system [17], [19]. Such an approach also all ows us to treat
the second point in such a way that the output error

depends only on the initial conditions x(0) and xy (0),
and nd on the model input uy, (k). To this end, let us
definethe auxiliary system

: %KE (k+1) = fe (e (k) ug () we (k)

e (k) = he (xe (k)
with state xz =(x,xy )", input vedors ug =u and
Wg = Uy , and
_ [f (xu)

feloe e i) EfM (X Un )E

he = h(x) =y (xy )

Note that wg is considered as a disturbance signal
acting on the auxiliary system. Given this g/stem,
together with an equilibrium point x2 =(x°,xﬁ’,|) it is
known [13]-[15] that, if the disturbance-decoupling
problem with measurement disturbance wg associated

(6)

with the system has a solution on QF , an gpen and dense
subset of XxXy xUxU,,, defined around the
equilibrium point (xo,xﬁ’,I u ud ) then there «ists an
analytic mapping Y& defined on QE with the property
that the control law.

u(k) == (e () we () =y un k) @
decouples the output yg (k) of the closed-loop system
(6)-(7) from the disturbance w (k) for every initial state
xe (k) in an open and dense subset of X x X, contained
in QF.

In the sequel the DAMM P will betreated in terms of a

relative degree associated with each autput components
yi and yy . Thus the following definitions are

introduced. Let fy, fMO, and fEO be the undriven state
dynamics f(;D), fy(t0), and f.(iD,0), respectively,
and f/, f,\jlo . and ijO the j-times iterated compositions



of fo, fu,,and fe with f0(x)=x, i (xu)=xu.

and f¢ (xe)= Xe.

Definition 2 [16] The ouput y; of the plant (1) is
said to have a relative degree d; in an open and dense
subset O of XxU containing the euilibrium point
(xo,uo), if

[ o 141 (o)) =0 ®

for all 0<l<d, -1, for al 1< j<m, for all (x,u)0Q,
and

%[n o £ (f (x,u))]¢ 0 9)

for some j O{L,...,m} and for all (x,u)0Q,.

A similar definition is given for the relative degree of
the model (2), dM, , inan open and dense subset OM, , of
X XUy containing the equilibrium point (xﬁ’,I up )

We define the inpu-output decugding matrix of the
plant P asthe mxm matrix

A(x,u)=£[h o 18 (F(xu):1<i, j<m|,  (10)
i
and consider the following assumption.

(A1) Forall 1<i<m andfor al xg = (x,xy )0 X x Xy
and uy OUy,,

o0 Im{hE, ° fEC:I (fe (xe Ly ))}’ (11)

where Im{¢} denotes theimage of ¢ .

The following theorem gives necessary and sufficient
conditions for the local solvability of the DAMMP.
Theorem 1 [17] Consider the plant (1) and the model

(2) around, respedivey, their equilibria (xo,uo) and
(x,?,I Uy ) Suppose that the output y; of the plant and the
output Yy of the model have finite relative degree d;
and dy , respedivey defined on G and Qy , for
i=1,...,m. Assume that assumption A1 holds. Suppose also
that the input-output decouding matrix A(x,u) in (10) is
norsinguar for all (x,u)00X xU . Then the DAMMP is
locally solvable on QE if, andonly if,

d sdy , 1<is<m (12)

Next we show the representation of the auxiliary
system (6) feedback by control law (7) in terms of the

plant (1) and the model (2) in different coordinate frame.
Suppose that the plant is fully linearizable, i.e

Z”jl(oli +1)=n. The definition of d shows that
h (x),...h o 4 (x) are independent functions [20] and
can be chosen as new coordinates &(x) = [&(X),....& (X)]'

with &, (X):[Ei,l(x)""!fi,dlﬂ(x)].r =[h (X),---,h o fo! (X)]T
for i=1,...m, defined on the subset O=0, n...n O,
locally around X°, as follows: & ;(x)=h o f) ™ (x), for
al j=1,...,d, +1 and for all i=1,...,m Let us consider the
auxiliary system (6) and the new coordinates functions
(Z (XE )’ X )= (P(XE ) = (p(X, Xy )' (13)
whee  now  Z(xg)=[¢,(xe )l (k)] with
Zi(XE)z[Zi,l(XE)""’Zi,dl+l(XE)]T and
Zi,j(XE)zhE, ° ijO_l(XE)zfi,j(X)_hM ° fr\;?, (14)

for all j=1,..,,d; +1, and for al i=1,...,m. This is indeed
an admissible choice because the Jacobian matrix
dlw(xc)J/oxe  is  nonsingular. By  choosing
u=y%(xz,uy ), the representation of the systems (2) and
(6) in the new coordinates takes the form

Zi,j (k +1) =Zi,j (k),

j ::L---,di; i=1..m,
Cigalk+1)= 0,00, (k). "
aig, Zi,d, +1(k),

Xy (k +1) = fy (XM (k)’uM (k))’
Ve (K)=¢,(k) i=1..m
From these last expressions we see that the outputs
y, (k) of the plant differ from the outputs yy (k) of the
model by a signal Ye, (k) obeying the linear difference
equation. We can also identify two subsystems in the
closed-loop system (15), namely:
1. Thesubsystem described by the equation
xu (k +1) = £ Oy (k). uy (k).
which represents the dynamics of the model, and
2. The subsystem described by the equations
Zk+D)=A7 () i=1...m,
with



oo 1 0 0r
qo o0 1 0
-0 ; ; DL
g 50 0 0 1 E
H‘ai,o ~fip i ai,diE

which represents the dynamics of the signals Ve, (k) .

Since the dynamics of M can be made stable by
assumption, if we choose the control law such that all the
eigenvalues of the matrix A* have magnitude strictly less

than 1, then the closed-loop system will be exponentially
stable and condition (3) holds, solving then
synchronization problem defined in sec. 2.

4 Synchronization of Rossler System

In this section we will illustrate the theoretic set up of
section 3 by means of aillustrative example.

Consider the discrete time nonlinear system described
by

x(k+2)=arx (k)= (K)) = B () + 1 -2x, (k)
% (k +1) =8, (k)L—x, (k) + ¢ k), (16)
3k +2)=n((x, (k) + y)1- 26 (k)) - 1) 6, (k)

It is known that with some parameters values (a = 3.8,

B=005, y=035, 0=378, ¢=02, n=01,
6=19) the ROsser system (16) exhibits some
hyperchaotic dynamic [18].

Adding an input u (control law) in (16) consider the
next hyperchaotic Rossler system like a plant P described
by

X (k +1) =aX% (k)(l_ X (k))
= B3 (k) + y)(1— 2%, (k) + u(k),
X, (k +1) = 8 %, (k)L — %, (k) + ¢ 3 k), (7)
X (k+ 1) =n{(x; (k) + )L - 2%, (k) - 1)1 - 6 x, (k)),
y(k) = %, (k)

Also considered another hyperchactic Rossler system
like a model M described by

XMl(k +1) =a XMl(k)(l_ XMl(k))
- B(XMS(k) + y)(l— 2Xy (k)) + Uy (k)1
XMZ(k +1) = 6XM2(k)(1_ XMz(k))+CXM3(k)1 (18)
XMS(k + 1) = n((XMs (k) + y)(l_ 2%y (k)) _1)
x (1_9XMl(k))’
Ym (k) = Xm2 (k)

we considered the same value parameters in the plant P
and in the model M and in this case uy =0 to keep the
model (18) with hyperchactic dynamic. The relative
degree of the plant (17) and of the modd (18) are
d =dy =2, with this we assure that the model-matching
problem has solution according with (12).

To solve the modd-matching problem following Sec.
3, we defined an auxiliary system according with (6)
where the output is the error between the outputs of (18)
and (17), then the output of this auxiliary system is given

by
Ve (k)= ()= ym () = xo(k) = 3 2 (k)
Defining Z;(k)= ye(k) we show the systems (17) and
(18) in a new coordinates taken the form
Zilk+1) = ye (k+1)= 5 (k),
{5k +1) = ye (k +2) = Z5(k),
23k +1) = ye (k+3) = v(k)
= ~ap{3(k)~ 0 o(k) - agls (k)
In this case (19) is fully linearizable (if the systemisin
different form will be necessary to do another stability
analysis to assure output synchronization [21]) and then
with a proper selection of values a; Qai \ < 1) we assure

then the closed-loop system will be exponentially stable
and condition (3) holds.

With the system (19) we obtained a discrete control
law given by (7) that solved model-matching problem.
Using this control law (7) we doing the next simulations
described here:

We choose a; =01 and with this value the
synchronization time 7 (the time when synchronization
was achieved) was in k=18. The initia condition of
x(k) and xy; (k) were (-0.3-0.2,0.3) and (0.1,0.2,-0.1)
respectively. Figure 1 shows the matching about
y(k)and y (k), and also shows the synchronization error
evolution between outputs of (17) and (18), We can see,
after some transient behavior, that synchronization is
achieved.

Figure 2 shows the error evolutions in the rest states.
Note that the control law u only assure the
synchronization of y(k)and yy (k), but in this case we
have fully synchronization (synchronization in all states).

(19)
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Fig.1. Matching between y(k)and yy (k), and
synchronization error e, = x,(k)— xu 2 (k).
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Fig.2. Synchronization error g = x (k) xu4(k) and
&3 = x3(k) - xmalk)-
In the next simulation we increase the value to
a; =0.75 and we observed that synchronization time t

increase, so we can changes the synchronization time
moving the gain values a; .

Xxm2,x2
O N B o Rk N oW
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Fig.3. Matching between y(k)and yy (k), and
synchronization error e, = x,(k)— xu 2 (k).

1 1 1 1
20 40 60 80

Figure 3 shows the matching about y(k)and yy, (k), and

also shows the synchronization error evolution between
outputs of (17) and (18), in this case the synchronization
timewasin T =91.

5 Concluding Remarks

In this paper we have presented an approach to achieve
synchronization of hyperchaotic discrete systems via the
matching-model approach. In particular this method is
indeed suitable to synchronized two hyperchaotic R6ssler
systems unidirectionally coupled, we show in this case
that fully synchronization is achieved.

In a forthcoming article we will be concerned with
increase this job using systems not fully linearizable,
systems with perturbed signals, and using nolinear control
tools to apply this approach in private communication.
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