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Abstract: - The operator equation of the first kind is considered as a mathematical model for some applied
inverse problems. The input data are given in discrete and noized form, that make the problem of the
solution of the operator equation ill-posed. The regularization based on the Full Spline Approximation
Method (F.S.A.M.) is proposed. It consists in the recursive using of four steps: 1) pre-smoothing the
right-hand side of the equation; 2) application, possibly with precondition, a spline collocation scheme
(pre-reconstruction); 3) post-smoothing of the pre-reconstructed solution; 4) checking up the stop rule.
The F.S.A.M. differs from the previously proposed and justified by the author Spline Approximation
Method (S.A.M.) by: 1) the presence of the precondition and the post-smoothing; 2) realisation of
the pre- and post-smoothing in the spline spaces of possiblly different dimensions, that leads proposed
F.S.A.M. in a class of multigreed methods. The new element in the proposed method is considering the
number of the recursions and the precondition parameter as two independent regularization parameters.
The theoretical foundation of F.S.A.M. so as the results of numerical experiments for some integral
equation of electrodynamics and inverse problem of electroencephalography are presented.
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1. Introduction ered. Let the right-hand side f be representative

Let a linear compact injective [1] operator A, act-
ing from the Gilbert space G into G, is given. Let
l;,1 = 1,...,n, be limited linear independent func-
tionals and £, is the operator from G into R, :
Lng = (11(g), .y 1n(9))". A problem of the approx-
imate solution of an operator equation

Au=f (1)

on the known values [; (f), i = 1,...,n; is consid-

in a kind of a sum of an exact right-hand side f
and an error ( : f = f + ¢, with a given estimation
1£n¢ll g, /v/n < 6. We will propose that f € R(A)
- the range of the operator A, ( ¢ R(A), thus,
the problem (1) is incorrect (unstable) [2]. Let us
choose the Hilbert space U C G and a linear closed
operator L : U — G. The element v, is named by
interpolating spline [2] for given v € G, if it is a solu-
tion of a problem: ||Lv,||; = inf ey vy [[Lgllg, U(v)



={g9€eU: Lyg=Lyv}. We will assume that con-
ditions of existence, uniqueness of the interpolating
spline are executed [2]. Hence, we can determine an
operator P, of spline - interpolation, that the vec-
tor L,v for any element v associates with a spline
Up. It is known [2], that the set of all splines
forms the n - dimensional Hilbert subspace U,, C U
with some basis ¢1,...,,. The space U, is com-
plete concerning the norm |[ul|, ,, = (u, u)i/i, where
(w,v)p,n = it li(wh(v) + (w,v)r, (w,v)p =
(Lu,Lv)g, u,v € U. The spline v,, interpolat-
ing the element v, has an orthogonal property [2]:
(TnyVn —0),n = 0 for any r,, € U,. We will assume
that ”complementary” v||glls < |lgll,, ,,, condition
g € U, is fulfilled for some v = const > 0, and
the convergency of the interpolating spline takes
place, so that ¢, = ||PnLng — 9|z, n — 0, n — 00,
g € U [2]. We shall consider in general case bel-
U
{cpg-l)} of different dimensions n; for the collocation
(I = 0), for the pre-smoothing (I = 1) and for the
post-smoothing (I = 2), corresponding to construc-

tive operators L(nll), ﬁ(nll)(g) = (lgl)(g)a"-algl)(g))Ta
0]

spline-interpolation operators P, Realization
of smoothings is based on the explicit [4] approxi-
mation operators Pn(i) acting from R,, into U,g,) :
D A ! ! 1) Al
POLD s = 33, 91, o as | PAOEDy o]
— 0, n = ming< ; < 2 n; — 00. We assume also that

low the different spline-subspaces with bases

the matrix Vn(ll) = E,(fl) P,gll) has the eigenvalue spec-
trum A; : 0 < A <1, ¢ =1,...,n. To construct
the collocation scheme we need approximate the
operator A by some operator A,,, acting from G
into GG, and also to use some approximation of the
right-hand side. For example, if A is an integral
operator, A,, means an operator with approximate
kernel. The collocation means, that the approxi-
mate solution of the equation (1) with the approxi-

mated operator and the right-hand side is located in
a kind up, = 70 ¢; cpg-o), where ¢; are unknown co-
efficients, determining from the preconditioned col-
location scheme. Moreover, we will use iterative
scheme and assume that numbers n; = n;(k) are de-
pendent from the number of iteration k, that leads
proposed F.S.A.M. in a class of multigrid methods.
The foundation of the F.S.A.M. consist in: 1) justi-
fication of existence and uniqueness of the precon-
ditioned collocation spline; 2) justification of the
regularization properties for appropriated choice of
the regularization parameters. In a paper [5] we
generalized well known [1] and previous results of
the author [3], [4] on foundations of the collocation
scheme for the case without the proposition about
transferring by the operator A the linear span of the
basic functions into itself and also, when the oper-
ator A,, approximates the operator A in a hole
in the space G without eliminating it’s calculating
exactly main part. We justify here the existence
and the uniqueness of the collocation spline with
the precondition and generalize the regularization
properties for the case of the presence of pre- and
post-smoothing and combination with the precon-
dition by the Lavrentiev regularization (L.R.).

2. Formulation of the Full Spline Approx-
imation Method and it’s Foundation

The Full Spline Approximation Method for the nu-
merical solution of the problem (1) consists in con-
structing a recuperation spline u,, s by recursive us-
ing of four steps:

1) pre-smoothing the right-hand side f € F of
the equation (1), i.e., calculation of an element yy:
Yk = Pﬁ)(k)ﬁsl)(k) Yk-15 Yo = [

2) pre-reconstruction by a preconditioned collo-
cation method for the equation (1) with the ap-
proximated operator and smoothed right-hand side,
i.e., solving the preconditioned by the L.R. system



of linear algebraic equations (A,, + akI)é(k) = fi
with a matrix Ay, = (@), G = L0 (Augel”),
t, 7 = 1,..,n; I is the identical matrix, ay is a
positive numerical parameter, the right-hand side
fi = C(n%)(yk), relatively components of a vector
alk) — (cgk) (k))T

s Cng )7 used In the location w,qg) =

no(k k
SERRCNT
3) post-smoothing, i.e.
~ _ p@ /@2
Una(k) = L) Ly Yo ()s Yk
0) ~
OékI)E,(m)(k)Um(k);

4) stop rule comparing: if the discrepancy rp =
128000 F = £ wll| /v/ma(D) <6, then k= k+1,
go to the item 1); if v, > 6, then K =k, ups =
Up,(K)s SEOD.

We propose that the exact solution of the equa-
tion (1) with the exact right-hand side 7 = A~ f
ceUO,

Theorem. Let the hypothesis are fulfilled:

1) A=A*>0in G;

0 Aq: LO) = 0)g: LO)

2) (LOagL g)G (ALOg; L g)G,

(0) - 1,(0) = 0)g: 1,(0)

(L Anog; L g)G (AnoL 9 L g)G, for any

g € U(O);

3) [|1A = Anglle—G = Yng — 0, mg — 00 ;

2

4) vallglle < (Ag,9)1© py» for any g € U,
Y4 = const > 0;

5) ap = a = max{\/Tng, VO;

then for sufficiently large n and small § the recu-
peration spline u,, s exists, is unique and has the reg-

of the collocation spline;
calculation the splines

— pO)

ularization property limy, .o 50 |[T — uns/|g = 0.

Proof. The justification of the existence and
uniqueness of the collocation spline without the
precondition under the hypothesis 1) - 3) is pre-
sented in [5]. It means that the matrix A, is invert-
ible, then for sufficiently small « > 0 the matrix
(A, + o) is invertible too, hence the recupera-
tion spline w, s exists and is unique. For justifi-

cation of the regularization property we note the
first, that the operators Pr(zll)(k)’l = 1,2 realize the
smoothing and eliminate errors from the input data
and from the pre-reconstructed spline. For exam-
ple, in the case ny(k) = n(k),l = 0,1,2; L) =
L?) | the matrixes A, Vn(l) = Vn(2) =V are sym-
metrical, the procedures 1) - 3) of the F.S.A.M.
can be presented in the following matrix form:
(Any + DV (Apy + )"V = (V)2. Hence,
the foundation of the regularization properties of
the pre- and post-smoothings can be obtained from
the results, presented in [3], [4]. But here the pre-
condition by the L.R. play the main part in the reg-
ularization process for the space G. The smoothings
are important for recuperation in spaces with more
strong norms, or, by the other words, for improve-
ment of the recuperation, as we will demonstrate
in numerical experiments bellow. Let us designate
u?LO the collocation spline, constructed without the
precondition on the exact operator A and the exact
right-hand side of the equation (1). From the results
obtained in [3] it follows the existence, uniqueness of
0

. .
Uy, and it’s convergency to 7 in G, when ng — oo.
0

The vectors ¢y , ¢, 5 of coefficients of the splines u,,
and wu, s in their expansions with the basis {cpz(o)}
satisfy correspondingly to the systems of linear al-
gebraic equations Acy = Egg))f, (Ang +agl)ty,s =
P 0 ..

fr, A= {a?j}, a?j = li(Agog- )), i, 7 =1,...,n9. Due
to the discrepancy principle we have the estimation
||£$2))7— frllR. //T0 < 26. The matrixes of these
systems satisfy to estimation ||A — Ap,|l < Yne-
From the well-known properties of the L.R. the re-
lations follow: [[@ — &y,4]R,, /v7i0 < O(Z2) <
O(V8 4+ \/Ang) — 0, n — o0, & — 0. This implies
the stability in the space G and complete the proof.



3. Solving the Integral Equations with the
Singularity in the Kernel

Let us consider a singular integral equation of the
first kind:

0% Kz, Hu(t)dt = f(x)

Au = (2)

for the periodic on the segment [0,27] functions u
and f. The kernel K (z,t) = —log(sin?(0.5(z — t)))

has the logarithmic singularity. These integral
equation is the characteristic one for a number of
applied inverse problems in electrodynamics [1], [4].

As the subspaces of spline functions Uég) we
use bellow the linear periodic on the segment
[0,27] splines and as UT(LZ,),Z = 1,2 - the cu-
bic periodic splines. We introduce uniform grids
ti = (i — Dhy, i = =2,...,n; + 2 with a steps
hi = 2n/(ny — 1), I = 0,1,2; functionals [;(u)
= f(ti), 1 1,...,n;; G = L9|0,27], operator
LOf() = df ())/dr, U = wiV(0,2n]; LOf(r) =
a2 f(t)/de?, UO = WiP[0,2x], 1 = 1,2. As a basis
we use the Schoenberg B-splines of the m—th degree
sjm(t), m = 0,1,3. So we use in the collocation
scheme the linear splines ui(t) = 372 ¢;s51(¢),
t € [0,27] with unknown coefficients that obey
the condition: ¢; = ¢p,. Let us introduce auxil-
fary uniform grid {t;11/2} @ tiy12 = ti + (tig1 —
t;)/2. We will use approximations A,, of the op-
erator A constructed by the following formulas:
Apgu = Yot lgh)(;l u)sio(x), where 4 u =
ho Y10 K (, t)ulty), lgh)u = u(tiy12)- It is easy
to check up that all hypothesis of the Theorem
above are fulfilled and proposed F.S.A.M. give the
regularization algorithm in L9[0,27]. We have re-
alized this algorithm as a collection of MATLAB
programs. Let us put outcomes of some numerical
experiments for the exact right-hand side f(z) =

msinx; exact solution u(t) = sint, the noized right-

hand side f(z;) = f(z;)+&5, 5 =1,...,n1, {¢;} are
causal errors, estimated by §. We fixed n;(k) = n in-
dependent from the number of iterations £ and cal-
culated for different 6 =¢; =0.02¢, 2 = 1,...,15 the
discrete quadratic mean errors r(g;) of the recuper-
ation of the integral equation solution. The numeri-
cal results for different n demonstrate, that, in gen-
eral, the recuperation by L.R. with pre-smoothing
(S.A.M.) is better than the recuperation by L.R.
only, but the recuperation by L.R. with pre- and
post-smoothing (F.S.A.M.) is the best. The graph-
ics of the corresponding r(¢) for n = 31 are pre-
sented in Fig. 1. We note that the regularization
properties of the F.S.A.M. are justified in Theorem
above for arbitrary dependence n;(k) from k, such
that n;(k) > ni(1), that are sufficiently large. Some
numerical experiments demonstrate the improve-
ment of the recuperation, if n;(k) increase with k.
The choice of ny(k), that guarantees this improve-
ment is under the author’s investigation.

4. EEG Inverse Problems

Very important area of the constructed algorithms
application is Electroencephalography (EEG) In-
verse Problems. We use an approach based on the
physical model presenting a spatial distribution of
the potential fields caused by the neuronal current J
on the cerebral cortex only. Let us consider a model
of a head occupying an area €2, consisting from two
subareas: Q = [J?_; Q;, that are restricted by two
concentric spheres S; and Sy with radiuses r; and
r9. Subarea {2 correspond to the brain, and €25 - to
the rest part of a head, with conductivities o; and
o2. We will design as 7i; vectors of the exterior unit
normal for the area €2; on Si, v = v; - potentials
of the electric field in €;, 7 = 1,2. Under made
assumptions it is possible to write the EEG inverse
problem as a problem of calculating (recuperation)
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Figure 1: Errors of the recuperation of the one-
dimensional integral equation solution: ”- -7 - by
L.R.;”-” - by S.A.M.; ”+” - by F.S.A.M.

the normal current
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where v; are solutions of a boundary problem:

Av; = 0, in Q;, 1=1,2; (4)
v = Uy in Sl ) (5)
vy = f in SQ , (6)

where f is the potential of the electrical field mea-
sured on the scalp. Using a potential theory we
can present v(P),P € Q in a form of the poten-
tial of the simple ley with unknown density u(M),
M € Sy, and obtain respectively u(M) an integral
equation

(7)

_ 1 u(M) _
AUZE//SlmdSl(M)_f(P)’

where P € Sy, r(P, M) is a distance between points
M and P. We will locate in a spherical system of
coordinates the density u(f, ) as a bilinear peri-
odic spline 5(6, ) = X101 1 ¢ i1 (0) s5,1(0),
0,0] € D = [0,2n] x [0,7]. B-splines are con-
structed on the corresponding uniform grids. The
pre- and post-smoothing are realized by bicubic pe-
riodic splines. The approximation of the operator
A is constructed similarly to the approximation of
the integral operator of the equation (2). It is pos-
sible to choose the corresponding spaces and check
up the fulfillment of all hypothesis of the Theorem,
that guarantees the regularization of the density
recuperation by the F.S.A.M. in the space Ly[D],
hence, the stability of the current recuperation.

Let us put outcomes of some numerical experi-
ments on the model example, that confirm the sta-
bility of the current recuperation by proposed al-
gorithm. We supposed r; = 3, ro = 4; 01 = 5,
o9 = 1 and solved the first the direct problem,
when for given J = sin(f + ¢) we calculated ap-
proximately coefficients of the spline s(6, ), con-
sidered as solution of the corresponding to the for-
mula (3) the Fredholm integral equation of the sec-
ond kind. Obtained coefficients we used to calculate
the ”exact” values of the potential on the sphere S,.
Then we formed noised data of the right-hand side
of the equation (7) by adding causal errors to cal-
culated ”exact” values. We used the simple variant
of F.S.A.M. with the same grids in recursions with
number of units N = 21, M = 21. We demonstrate
in a Fig. 2 the recuperation of the current .J on
the sphere S; for ¢ = 0.3. We have the best results
of reconstruction by F.S.A.M.

Some results of S.A.M. application to the coeffi-
cient inverse problems of heat-conduction, identify-
ing of characteristics of the porous media of confined
aquifers, and some another EEG inverse problems
are presented in [5], [6], [7].
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Figure 2: The recuperation of the current .J in EEG
inverse problem: graph (a) — the exact J; graph
(b) — recuperation by L.R. only; graph (¢) — recu-
peration by S.A.M.; graph (d) — recuperation by
F.S.A M.
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