
A Simplex-Genetic method for solving the Klee-Minty cube

JUAN FRAUSTO-SOLIS, RAFAEL RIVERA-LOPEZ
Department of Computer Science

ITESM, Campus Cuernavaca
Av. Paseo de la Reforma 182-A, 62289, Temixco, Morelos

MEXICO

Abstract: - Although the Simplex Method (SM) developed for Dantzig is efficient for solving many linear
programming problems (LPs), there are constructions of hard linear programs as the Klee-Minty cubes and
another deformed products, where this method has an exponential behavior. This work presents the integration of
genetic algorithms (GA) and SM to fastly reach the optimum of this type of problems. This integration, called
Simplex Genetic Method (SGM), applies first a GA to find a solution near the optimum and afterwards uses the
SM to reach the optimum in a few steps. In the GA phase, the populations are constructed by only basic LP
solutions codified as binary chromosomes and the crossover operator uses a tabu approach over infeasible
solutions to produce the new offsprings. Based in this binary representation, a translation schema is used to
transfer the GA solution as the initial solution of the Simplex search mechanism, avoiding that the SM realizes
many iterations and reducing the optimum search time. In this work, several instances of the Klee-Minty cube
are evaluated and compared with the traditional SM and the results suggest that for hard linear problems the
SGM has better behavior that the SM.

Key-Words: - Genetic algorithms, linear programming, Simplex method, optimization.

1 Introduction
The development in 1947 of the Simplex Method
(SM) for Linear Programming problems (LPs) marks
the start of the modern era in optimization [1]; many
implementations of SM have been applied to real
world problems ([2], [3]), and many researchers have
examined closely the SM characteristics. SM is still
used in most practical problems ([4], [5], [6], [7],
[8]), although another methods are attractive to many
researchers (interior point methods, for instance). SM
has many improvements (see [9]), and several pivot
rules have been proposed [10]. Although the SM
finds an optimum solution in short time for many
practical problems [11], for LPs such as the Klee-
Minty cube (KMd) and another deformed products
[12] the deterministic pivot rules have an exponential
behavior. A d-dimensional KMd, for instance,
requires 2d simplex iterations [13].
Genetic Algorithms (GAs) are considered as a global
search method based on natural genetics [14], an
adaptation process applied over binary strings using
both crossover and mutation operators [15]. GAs
have been successfully applied in many complex
problems ([16], [17], [18] and [19]) and there are a
lot of forums exist to exchange ideas and
collaborations between researchers (see [20]).
However, GAs are unconstrained optimization
procedures, and therefore is necessary to develop
techniques of incorporating the constraints (normally

existing in any real-world application) into the fitness
function [21]. The central problem for applying GAs
to the constrained optimization is how to handle
constraints because genetic operators used to
manipulate the chromosomes often yield infeasible
solutions [20]. So, several techniques and approaches
to handle constraints ([20]-[32]) have been proposed.
Among them, they are several works showing that the
hybrid genetic approach ([29]-[32]) is a good option
to solve hard optimization problems in an efficient
way.
 In this paper a Simplex Genetic Method (SGM) that
uses both a Simplex approach and genetic operators
in the search procedure for reaching the optimum of a
LP is developed. Genetic operators can be applied
because the basic solutions are codified as binary
strings. In order to avoid the creation of many
infeasible offsprings, the crossover operator uses
historical information represented by a tabu list
within the grade of infeasibility of each variable on
the solutions to create new individuals into the
evolution process. This tabu approach, together with
a handling technique, improves the generation of
chromosomes representing basic solutions. When the
genetic procedure is not improving its better solution,
this solution is transferred to SM that applies its
simplex machine to find the optimum in few
iterations. This transfer is based in the binary
representation of the solutions. The better GA

solution represents the initial vertex of the simplex
search mechanism, avoiding that the SM realizes
many iterations and reducing the optimum search
time.

2 Preliminaries
A LP method finds a solution x for {z=cTx: Ax≤b}. A
feasible solution is a basic solution that is one vertex
of the feasible region, a polytope delimited by the
constraints. SM exploits the combinatorial structure
of the LP to find the optimum and this is the reason
why the LP is also catalogued as a combinatorial
optimization problem ([33], [34]).

2.1 Simplex Method
SM searches along the edges of the feasible region,
moving from one basic feasible solution (BFS) to
another adjacent BFS. For the convexity properties of
this region, if an LPs has an optimal solution, then
one of these BFSs is the optimum. SM has two
phases: (I) to obtain an initial solution, and (II) to
construct one tableau that identifies the basic and
non-basic variables, and to apply some pivot rule for
choosing both the entering and the leaving variables
of the actual BFS. SM constructs a sequence of
tableaux, until the optimum is reached. Revised
Simplex Method (RSM) uses a matrix representation
for a LP and produces the sequence actualizing at
each iteration only a sub-matrix B of A. Many pivot
rules ([10], [35]), schemes for processing B [35] and
another techniques ([36], [37], [38]) have been
developed for improving SM. Klee and Minty
showed in [13] that SM has an exponential behavior
for KMd. KMd represented in (1) is a deformed
product of one d-cube. The figure 1 shows a 3-
dimensional KMd using ε < 1/3. KMd has an
exponential behavior for any deterministic pivot rule
([33], [10], [12]).

max xd
s.t. 0≤x1≤1; εxj-1≤xj≤1-εxj-1

for j:1,…,d and 0<ε<1/2

(1)

2.2 Genetic Algorithms
GAs, differ from conventional search techniques, as
they start with an initial set of random solutions
called populations [20]. Michalewicz in [39] resumes
the five components of a genetic algorithm.
 The central problem for applying GAs in constrained
optimization is how to handle constraints because the
genetic operators used to manipulate chromosomes
often yield infeasible solutions [20]. Many
approaches have been proposed for handling

solutions that violate one or more constraints, but no
one general method has emerged [40]. The existing
techniques can be roughly classified as rejecting,
repairing, modifying genetic operator and penalty
strategies.

Fig. 1. The Klee-Minty cube for n=3 and ε < 1/3.

Penalty strategies transform the constrained problem
into an unconstrained problem by penalized
infeasible solutions. The penalty term p(x) can be in
addition form, as in (2), or in product form, as is
showed in (3). In [21] is provided a survey of
techniques to handle constraints in GA.

fitness(x)=f(x)+p(x)
fitness(x)=f(x)p(x)

(2)
(3)

3 Hybrid approach
A hybrid approach combines GAs with another
techniques to develop hybrid genetic algorithms
([29], [30], [31], [32]). A hybrid system aims to take
advantage of GAs (to reach fast a solution near to the
optimum) and then to apply another search procedure
(SM method, for instance) to carry out fine search
and to find the optimum. In this paper, this hybrid
approach is used: GA is applied for reaching a good
solution, and this solution is refined using the RSM.

3.1 Revised Simplex Method
RSM uses a sub-matrix B of A in its search
procedure. Using max {z=cTx: Ax≤b} and the
concepts of basic and non-basic variables, the
formulas (4) and (5) can be derivates. Formula (4)
represents the LP using basic and non-basic variables,
and (5) shows z using only non-basic variables (that
is useful for the iteration process).

 max { z = CBxB + CNBxNB : [B | N] x = b}
 z = CBB-1b - (CBB-1N - CNB) xNB

(4)
(5)

In (4) and (5), CB and CNB are the cost coefficients of
basic xB and non-basic xNB variables, respectively,
and N and B are sub-matrices of A. N has the initial
non-basic columns and B has the basic columns. B-1
is the only element actualized in the process and both

optimality and feasibility conditions are used.
Optimality condition uses the second term of (5) and
it tells that the entering variable (xk) is the non-basic
variable with a maximum contribution to the
objective function. This occurs when (CBB-1Ak–
ck)<0. If all contributions are positives, then the
optimum is reached and the method finishes [41]. The
feasibility condition uses the formula (6) to determine
the leaving variable (xj) for the next solution. xj
should be minimal and positive, otherwise, a solution
does not exist. Although there are several
implementations of RSM [9], the number of visited
vertices is always the same, and so their behavior in
the KMd is exponential for all of them. This is
because the progress of RSM with these
implementations only improves the amount of
calculations by iteration, but the number of iterations
remains the same.

>=
=

0)P(B ,
)P(B

b)(B
ik

1-

ik
1-

i
-1

1
min

m

i
jx

(6)

3.2 Simplex Genetic method
The main idea of this paper is to move quickly to an
approximate good solution without having to follow
adjacent solutions, using GAs, and then reach the
optimum with the RSM. From one LP in its standard
form, SGM starts with a random population of basic
solutions, and new populations are produced applying
genetic operators. They are created until GA
converges to its best solution (optimal or sub-
optimal). This solution (a binary string) is processed
to identify the basic and non-basic variables, and to
construct the actual matrix B-1. Then RSM applies
their simplex procedure. Figure 2 shows the SGM
algorithm. Two important aspects in this approach are
the string codification and the definition of crossover
and mutation operators. These elements must assure
that all chromosomes are basic solutions for the LP.
In the next subsections, these aspects are described.

3.3 Components of SGM
In the SGM the main components are the schema for
solution representation, the construction of the fitness
function, the definition of the genetic operators and
the transfer scheme from GA to RSM.

3.3.1 Genetic representation of solutions
Each string represents a basic solution of a LP. A LP
with n variables m constraints has m basic and n non-
basic variables. String length is m+n bits, where a bit
1 represents a basic variable and a bit 0 is a non-basic
variable. All strings have m bits 1 and n bits 0. Figure
3 shows two examples of basic solutions for a LP

with n=2 and m=4. In this approach, the artificial
variables are avoided.

3.3.2 Fitness function
In this implementation, fitness function is an adaptive
penalty function based in [21] and showed in (7),
where)(xbi∆ is the violation for each constraint and

max
ib∆ is the maximum of violation for constraint i in

the population.

∑
=

∆
∆

−=
m

i i

i

b
xb

m
xp

1
max

)(11)(
α (7)

 procedure Simplex_Genetic;
 begin
 {*** Genetic phase ***}
 iteration← 0;
 Pick randomly an initial population P(0);
 Evaluate the initial population P(0);
 s0

*← better of P(0); fbetter
0 ← f(s0

*);
 repeat
 iteration← iteration+1;
 Recombine P(iteration-1) to yield P(iteration);
 Evaluate P(iteration);
 siteration

*←better of P(iteration);
 fbetter

iteration←f(siteration
*);

 until fbetter
iteration-1 = fbetter

iteration;
 {***Transition phase***}
 Determine original B-1 (B-1

0 = I);
 Ibasic←{i|i∈siteration

*∧(siteration
*)i=1};

 Construct a matrix T of A such that {Tj|j∈Ibasic};
 Apply i row operations in matrix [T|B-1

0] such that Ti=I;
 B-1

better← B-1
i, the right side of matrix [Ti|B-1

i];
 Actualize C such that {cj=0|j∈Ibasic};
 Actualize b, xB and xNB with the i row operations,;
 {***RSM phase***}
 optimality← feasibility← true;
 while not optimality∧feasibility do
 RN← CBB-1N – CNB;
 if RN > 0 then optimality←true;
 else begin
 select k as the entering variable such that
 (RN)k is the minimum;
 select j as the leaving variable as in (6);
 if xj not exist then feasibility←false;
 else Update xB, xNB and B-1;
 end
 end
 if optimality then z←CBxB;
 end

Fig. 2. The Simplex Genetic Method.

3.3.3 Genetic operators
To create a new generation, a new chromosome is
formed by merging two parents from a current

generation using a tabu approach for the crossover
operator and modifying a chromosome using a
mutation operator.

Fig. 3. Two examples of basic solution codified as binary
string: bits 1 represent basic variables and bits 0 represent
non-basic variables.

Tabu approach for crossover operator. Crossover
operator applies two operations: (a) Identical bits in
parents are copied into the child in the same site, and
(b) empty sites in the child are filled using a tabu list
constructed according to the values of variables in
infeasible solutions. A tabu list is a set of forbidden
moves allocated in a memory function that provide
strategic forgetting [42]. In this case, tabu list is
constructed by the average of the value of variables in
infeasible solutions (variables with negative value).
In figure 4, five infeasible solutions, the tabu list
produced by them and the construction of a new
solution are shown. Figure, 4-(a) shows five strings
of infeasible solutions, while 4-(b) shows the values
of these five solutions, and 4-(c) the tabu list (for
instance, 1.5/5=0.3 is the average of negative values
of the solutions). In 4-(d) two parents are shown, and
4-(e) shows that the identical bits in the parents are
copied. Using the tabu list, the empty sites in the
child are filled in 4-(f); in this example, two zeroes
are allocated in the sites where the tabu list has a high
value, because this value indicates that these
positions have been used by several infeasible
solutions. This high value indicates that this variable,
in infeasible solutions, is farther from the feasible
region, too. This approach allows new solutions to be
produced into the feasible region nearer to it. Tabu
list is actualized in each generation.

Fig. 4. (a), (b) and (c) shows the construction of tabu list,
(d), (e) and (f) shows the use of tabu list for the creation of
new chromosome.

Mutation operator. This operator replaces a
randomly chosen bit of a string with a different value.

Mutation uses a permutation of two bits randomly
selected in the string. In figure 5, a string with 4 basic
and 3 non-basic variables is selected for applying the
mutation. Two sites are selected (1 and 3, in this
case), and the bits are permuted.

Fig. 5. Mutation operator over a chromosome.

3.3.4 Transfer scheme from GA to RSM (Gauss
operator)
The better solution produced by the GA will be the
initial solution for the RSM. GA solution (binary
string siteration

* in the algorithm shows in figure 2) is
transformed as the initial elements for RSM (B-1

better,
xB, xNB, C and b). The original B-1

0 is an identity
matrix I (constructed for the coefficients of the slack
variables in the restrictions). Matrix T is then
constructed using several columns of the original
matrix A, this selection is based on the binary string:
an Aj column is used in T if the site in binary string is
1. Matrix T is the actual Bbetter. Then, reducing T to I
and applying the same row operations in the original
B-1

0, the actual B-1
better is calculated [43]. This is the

function of a new operator called Gauss operator.
Formulas (8) and (9) show how B-1

better can be
calculated using this Gauss operator. Figure 6 shows
an example of this operator.

Bbetterx = Ib = B-1
0b

x = B-1
betterb

(8)
(9)

The value of new C is produced changing the cj
values by zeroes, if j is the index of a new basic
variable. Vector b is actualized applying the same
row operations used in the T reduction process.
Finally, vectors xB and xNB are actualized. Gauss
operator avoids the direct calculus of B-1

better.

Fig. 6. An example of the gauss operator over the values of
matrix B-1 and to calculate its new value that is passed to
RSM.

4 Results
The principal results obtained with the SGM are
shown in figure 7. All tests were executed in an Intel
Pentium II, 200 MHz PC. Figure 7 shows an
exponential behavior of RSM with the number of
variables, and the same for SGM; however the

increased rate in the later is much smaller that the
former, even for the worst case. It is clear that SGM
has a substantial improvement over RSM for KMd.
For this comparison, SGM was executed for many
tests, and we reported the best and the worst case.
From the experimental result for the KMd, it is
observed that:
1. RSM has a better behavior only when the number
of variables is very small.
2. The population size of SGM affects noticeably its
execution time, so it is impractical for a few number
of variables.
3. SGM has a better behavior of RSM when the
number of variables is bigger.

Fig. 7. Behavior of RSM and SGM.

5 Conclusions and future work
This paper presents a hybrid approach for the solution
of hard LP (as KMd), using a GA inside optimum
solution search procedure. Both RSM and SGM were
implemented and the results suggest that SGM has
better behavior that SM for this type of problems.
The codification scheme developed for SGM allows
representing a basic solution as a string that can be
used with a genetic approach. In the SGM is avoided
the first phase of the original method, because the
genetic phase finds the initial solution for the simplex
procedure, and this implies that the artificial variables
are not used.
 As an extension of this work, concerning the
application of genetic operators, an additional effort
can be conducted for tuning up the algorithm, finding
the values of operators probabilities for improving the
SGM performance. Another extension is the study of
better procedures to obtain the function objective
value.
 The comparison of SGM and RSM can be extended
including other approach in SGM, as those given by
criss-cross methods or random methods for linear
programming.

References:
[1] J. Nocedal and S.J. Wright, Numerical Optimiza-

tion, Springer-Verlag, 1999.
[2] C. MacMillan, Mathematical Programming, John

Wiley, 1970.
[3] A.D. Belegundu and T.R. Chandrupatla. Optimi-

zation, Concepts and Applications in Engineering,
Prentice-Hall, 1999.

[4] M. Sakawa, K. Kato and H. Mohara, Efficient of
a decomposition method for large-scale multi-
objective fuzzy linear programming problems
with block angular structure, in Proc. IEEE Int.
Conf. on Knowledge-Based Intelligent Electronic
Systems, Vol. 1, 1998, pp. 80-86.

[5] K. Murakati and H. S. Kim, Optimal capacity and
flow assignment for self-healing ATM networks
based on line and end-to-end restoration, in
IEEE/ACM Trans. on Networking, Vol. 6, No. 2,
1998, pp. 207-221.

[6] Y. H. Liu, Qualitative test and force optimization
of 3-d frictional form-closure grasp using linear
programming, in IEEE Trans. on Robotics and
Automation, Vol. 15, No. 1, 1999, pp. 163-173.

[7] S. Nordebo and Z. Zang, Semi-infinite linear
programming: a unified approach to digital filter
design with time- and frequency-domain
specifications, in IEEE Trans. on Circuits and
Systems II, Vol. 4, No. 6, 1999, pp. 765-775.

[8] K. Yamamura and S. Tanaka, Finding all
solutions of piecewise-linear resistive circuits
using the dual SM, in Proc. IEEE Int. Symp. on
Circuits and Systems, Vol. 4, 2000, pp. 165-168.

[9] S. S. Morgan, A Comparison of Simplex Method
Algorithms. Master Thesis, U. Florida, 1997.

[10] T. Terlaky and S. Zhang, Pivot Rules for Linear
Programming, in Annals of Operations Research,
Vol. 46, 1993, pp. 203-233.

[11] K. H. Borgwardt, The Simplex Method. A
Probabilistic Analysis, Vol. 1, Springer-Verlag,
1987.

[12] N. Amenta and G. Ziegler, Deformed products
and maximal shadows of polytopes, in Advances
in Discrete and Computational Geometry, Amer.
Math. Soc., Vol. 223, 1999, pp. 57-90.

[13] V. Klee and G. J. Minty, How good is the
simplex algorithm?, in Inequalities III, Academic
Press, 1972, pp. 159-175.

[14] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-
Wesley, 1989.

[15] J. H. Holland, Adaptation in Natural and
Artificial Systems, U. Michigan Press, 1975.

[16] F. Ramos, V. de la Cueva and S. Hsia, Path
Planning using reference configuration and

genetic algorithms, in Proc. IASTED Int. Conf. in
Robotics and Manufacturing, 1996, pp. 403-406.

[17] V. de la Cueva and F. Ramos, Cooperative
Genetic Algorithms: A new approach to solve the
path planning problem for cooperative robotic
manipulators sharing the same workspace, in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Vol. 1, 1998, pp. 267-272.

[18] F.J. Ares-Peña, J.A. Rodríguez-González, E.
Villanueva-López and S.R. Rengerajan, Genetic
algorithms in the design and optimization of
antenna array patterns, in IEEE Trans. on
Antennas and Propagation, Vol. 47, No. 3, 1999,
pp. 506-510.

[19] J. Pittman and C. A. Murthy, Fitting optimal
piecewise linear functions using genetic
algorithms, in IEEE Trans. on Pattern Analysis
and Mach. Intelligence, Vol. 22, No. 7, 2000, pp.
701-718.

[20] M. Gen and R. Cheng. Genetic Algorithms and
Engineering Design, John Wiley, 2000.

[21] C. A. Coello Coello, A Survey of Constraint
Handling Techniques used with Evolutionary
Algorithms, Tech. Report LANIA RI-99-04, 1999.

[22] M. Schoenauer and S. Xanthakis, Constrained
GA Optimization, in Proc. Int. Conf. on Genetic
Algorithms, 1993, pp. 573-580.

[23] J. A. Joines and Ch. R. Houk, On the Use of
Non-Stationary Penalty Functions to Solve
Nonlinear Constrained Optimization Problems
with GA’s, in Proc. IEEE Conf. On Evolutionary
Computation, 1994, pp. 579-584.

[24] F. Jimenez and J. L. Verdegay, Evolutionary
Techniques for Constrained Optimization
Problems, in European Congress on Intelligent
Techniques and Soft Computing, 1999.

[25] B. W. Wah and Y. X. Chen, Constrained
Genetic Algorithms and their Application in
Nonlinear Constrained Optimization, in Proc.
IEEE Int. Conf. On Tools with Artificial
Intelligence, 2000, pp. 286-293.

[26] Z. Michalewicz, A Survey of Constraint
Handling Techniques in Evolutionary
Computation Methods, in Proc. Annual Conf. on
Evolutionary Programming, 1995, pp. 135-155.

[27] Z. Michalewicz and M. Schoenauer,
Evolutionary Algorithms for Constrained
Parameter Optimization Problems, in
Evolutionary Computation, Vol. 4, No. 1, 1996,
pp. 1-32.

[28] J-H. Kim and H. Myung, Evolutionary
Programming Techniques for Constrained
Optimization Problems, in IEEE Trans. on
Evolutionary Computation, Vol. 1, No. 2, 1997,
pp. 129-140.

[29] J. Renders and S. Flasse, Hybrid methods using
genetics algorithms for global optimization, in
IEEE Tran. on Systems, Man and Cybernetics,
Vol. 26, No. 2, 1996, pp. 243-258.

[30] A. Ruiz-Andino, L. Araujo, F. Saenz and J. Ruz,
A Hybrid Evolutionary Approach for Solving
Constrained Optimization Problems over Finite
Domains, in IEEE Trans. on Evolutionary
Computation, Vol. 4, No. 4, 2000, pp. 353-372.

[31] D. Whitley, Modeling Hybrid Genetic Algo-
rithms, in Genetic Algorithms in Engineering and
Computer Science, John Wiley, pp. 191-201.

[32] D.G. Sotiropoulos, E.C. Stavropoulos and M.N.
Vrahatis, A New Hybrid Genetic Algorithm for
Global Optimization, in Nonlinear Analysis,
Theory, Methods and Applications, Elseiver, Vol.
30, No. 7, 1997, pp. 1529-1538.

[33] C.H. Papadimitriou and K. Steiglitz, Combina-
torial Optimization, Dover, 1998.

[34] B. Korte and J. Vygen, Combinatorial Optimi-
zation, Springer Verlag, 2000.

[35] I. Maros and G. Mitra, Simplex Algorithms, in
Advances in linear and integer programming,
Oxford University Press, 1996.

[36] K. Fukuda and T. Terlaky, Criss-Cross Methods,
in Mathematical Programming, Vol. 79, 1997, pp.
369-396.

[37]B. Gärtner and G.Ziegler, Randomized Simplex
Algorithms on Klee-Minty Cubes, in Combina-
torica. 1998.

[38] M. Goldwasser, A Survey of Linear Progra-
mming in Randomized Subexponential Time, in
SIGACT News, Vol. 26, No. 2, pp. 96-104.

[39] Z. Michalewicz, Genetic Algorithms + Data
Structures=Evolution Programs, Springer-Verlag,
1996.

[40] S. E. Carlson, A General Method for Handling
Constraints in Genetic Algorithms, in Proc.
Annual Joint Conf. on Information Science, 1995,
pp. 663-667.

[41] D. G. Luenberger, Linear and Nonlinear
Programming, Addison Wesley, 1984.

[42] F. Glover, Tabu Search – Part I, in ORSA
Journal on Computing, Vol. 1, No. 3, 1989, pp.
190-206.

[43] S. I. Grossman, Linear Algebra, Grupo Editorial
Iberoamericana, 1984.

