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Abstract: - Although the Simplex Method (SM) developed for Dantzig is efficient for solving many linear 
programming problems (LPs), there are constructions of hard linear programs as the Klee-Minty cubes and 
another deformed products, where this method has an exponential behavior. This work presents the integration of 
genetic algorithms (GA) and SM to fastly reach the optimum of this type of problems. This integration, called 
Simplex Genetic Method (SGM), applies first a GA to find a solution near the optimum and afterwards uses the 
SM to reach the optimum in a few steps. In the GA phase, the populations are constructed by only basic LP 
solutions codified as binary chromosomes and the crossover operator uses a tabu approach over infeasible 
solutions to produce the new offsprings. Based in this binary representation, a translation schema is used to 
transfer the GA solution as the initial solution of the Simplex search mechanism, avoiding that the SM realizes 
many iterations and reducing the optimum search time. In this work, several instances of the Klee-Minty cube 
are evaluated and compared with the traditional SM and the results suggest that for hard linear problems the 
SGM has better behavior that the SM. 
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1   Introduction 
The development in 1947 of the Simplex Method 
(SM) for Linear Programming problems (LPs) marks 
the start of the modern era in optimization [1]; many 
implementations of SM have been applied to real 
world problems ([2], [3]), and many researchers have 
examined closely the SM characteristics. SM is still 
used in most practical problems ([4], [5], [6], [7], 
[8]), although another methods are attractive to many 
researchers (interior point methods, for instance). SM 
has many improvements (see [9]), and several pivot 
rules have been proposed [10]. Although the SM 
finds an optimum solution in short time for many 
practical problems [11], for LPs such as the Klee-
Minty cube (KMd) and another deformed products 
[12] the deterministic pivot rules have an exponential 
behavior. A d-dimensional KMd, for instance, 
requires 2d simplex iterations [13]. 
Genetic Algorithms (GAs) are considered as a global 
search method based on natural genetics [14], an 
adaptation process applied over binary strings using 
both crossover and mutation operators [15]. GAs 
have been successfully applied in many complex 
problems ([16], [17], [18] and [19]) and there are a 
lot of forums exist to exchange ideas and 
collaborations between researchers (see [20]). 
However, GAs are unconstrained optimization 
procedures, and therefore is necessary to develop 
techniques of incorporating the constraints (normally 

existing in any real-world application) into the fitness 
function [21]. The central problem for applying GAs 
to the constrained optimization is how to handle 
constraints because genetic operators used to 
manipulate the chromosomes often yield infeasible 
solutions [20]. So, several techniques and approaches 
to handle constraints ([20]-[32]) have been proposed. 
Among them, they are several works showing that the 
hybrid genetic approach ([29]-[32]) is a good option 
to solve hard optimization problems in an efficient 
way. 
 In this paper a Simplex Genetic Method (SGM) that 
uses both a Simplex approach and genetic operators 
in the search procedure for reaching the optimum of a 
LP is developed. Genetic operators can be applied 
because the basic solutions are codified as binary 
strings. In order to avoid the creation of many 
infeasible offsprings, the crossover operator uses 
historical information represented by a tabu list 
within the grade of infeasibility of each variable on 
the solutions to create new individuals into the 
evolution process. This tabu approach, together with 
a handling technique, improves the generation of 
chromosomes representing basic solutions. When the 
genetic procedure is not improving its better solution, 
this solution is transferred to SM that applies its 
simplex machine to find the optimum in few 
iterations. This transfer is based in the binary 
representation of the solutions. The better GA 



solution represents the initial vertex of the simplex 
search mechanism, avoiding that the SM realizes 
many iterations and reducing the optimum search 
time. 
 
 
2   Preliminaries 
A LP method finds a solution x for {z=cTx: Ax≤b}. A 
feasible solution is a basic solution that is one vertex 
of the feasible region, a polytope delimited by the 
constraints. SM exploits the combinatorial structure 
of the LP to find the optimum and this is the reason 
why the LP is also catalogued as a combinatorial 
optimization problem ([33], [34]). 
 
2.1 Simplex Method 
SM searches along the edges of the feasible region, 
moving from one basic feasible solution (BFS) to 
another adjacent BFS. For the convexity properties of 
this region, if an LPs has an optimal solution, then 
one of these BFSs is the optimum. SM has two 
phases: (I) to obtain an initial solution, and (II) to 
construct one tableau that identifies the basic and 
non-basic variables, and to apply some pivot rule for 
choosing both the entering and the leaving variables 
of the actual BFS. SM constructs a sequence of 
tableaux, until the optimum is reached. Revised 
Simplex Method (RSM) uses a matrix representation 
for a LP and produces the sequence actualizing at 
each iteration only a sub-matrix B of A. Many pivot 
rules ([10], [35]), schemes for processing B [35] and 
another techniques ([36], [37], [38]) have been 
developed for improving SM. Klee and Minty 
showed in [13] that SM has an exponential behavior 
for KMd. KMd represented in (1) is a deformed 
product of one d-cube.  The figure 1 shows a 3-
dimensional KMd using ε < 1/3. KMd has an 
exponential behavior for any deterministic pivot rule 
([33], [10], [12]).  
 

max xd 
s.t. 0≤x1≤1; εxj-1≤xj≤1-εxj-1 

for j:1,…,d and 0<ε<1/2 

(1) 

 
2.2 Genetic Algorithms 
GAs, differ from conventional search techniques, as 
they start with an initial set of random solutions 
called populations [20]. Michalewicz in [39] resumes 
the five components of a genetic algorithm.  
 The central problem for applying GAs in constrained 
optimization is how to handle constraints because the 
genetic operators used to manipulate chromosomes 
often yield infeasible solutions [20]. Many 
approaches have been proposed for handling 

solutions that violate one or more constraints, but no 
one general method has emerged [40]. The existing 
techniques can be roughly classified as rejecting, 
repairing, modifying genetic operator and penalty 
strategies. 
 

 
Fig. 1.  The Klee-Minty cube for n=3 and ε < 1/3. 

 
Penalty strategies transform the constrained problem 
into an unconstrained problem by penalized 
infeasible solutions. The penalty term p(x) can be in 
addition form, as in (2), or in product form, as is 
showed in (3). In [21] is provided a survey of 
techniques to handle constraints in GA. 
 

fitness(x)=f(x)+p(x) 
fitness(x)=f(x)p(x) 

(2) 
(3) 

 
 
3   Hybrid approach 
A hybrid approach combines GAs with another 
techniques to develop hybrid genetic algorithms 
([29], [30], [31], [32]). A hybrid system aims to take 
advantage of GAs (to reach fast a solution near to the 
optimum) and then to apply another search procedure 
(SM method, for instance) to carry out fine search 
and to find the optimum. In this paper, this hybrid 
approach is used: GA is applied for reaching a good 
solution, and this solution is refined using the RSM. 
 
3.1 Revised Simplex Method 
RSM uses a sub-matrix B of A in its search 
procedure. Using max {z=cTx: Ax≤b} and the 
concepts of basic and non-basic variables, the 
formulas (4) and (5) can be derivates. Formula (4) 
represents the LP using basic and non-basic variables, 
and (5) shows z using only non-basic variables (that 
is useful for the iteration process). 
 
          max { z = CBxB + CNBxNB  : [ B | N ] x = b} 
              z = CBB-1b - (CBB-1N - CNB) xNB 

(4) 
(5) 

 
In (4) and (5), CB and CNB are the cost coefficients of 
basic xB and non-basic xNB variables, respectively, 
and N and B are sub-matrices of A. N has the initial 
non-basic columns and B has the basic columns. B-1 
is the only element actualized in the process and both 



optimality and feasibility conditions are used. 
Optimality condition uses the second term of (5) and 
it tells that the entering variable (xk) is the non-basic 
variable with a maximum contribution to the 
objective function. This occurs when (CBB-1Ak–
ck)<0. If all contributions are positives, then the 
optimum is reached and the method finishes [41]. The 
feasibility condition uses the formula (6) to determine 
the leaving variable (xj) for the next solution. xj 
should be minimal and positive, otherwise, a solution 
does not exist. Although there are several 
implementations of RSM [9], the number of visited 
vertices is always the same, and so their behavior in 
the KMd is exponential for all of them. This is 
because the progress of RSM with these 
implementations only improves the amount of 
calculations by iteration, but the number of iterations 
remains the same.  
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3.2 Simplex Genetic method 
The main idea of this paper is to move quickly to an 
approximate good solution without having to follow 
adjacent solutions, using GAs, and then reach the 
optimum with the RSM. From one LP in its standard 
form, SGM starts with a random population of basic 
solutions, and new populations are produced applying 
genetic operators. They are created until GA 
converges to its best solution (optimal or sub-
optimal). This solution (a binary string) is processed 
to identify the basic and non-basic variables, and to 
construct the actual matrix B-1. Then RSM applies 
their simplex procedure.  Figure 2 shows the SGM 
algorithm. Two important aspects in this approach are 
the string codification and the definition of crossover 
and mutation operators. These elements must assure 
that all chromosomes are basic solutions for the LP.  
In the next subsections, these aspects are described.  
  
3.3 Components of SGM 
In the SGM the main components are the schema for 
solution representation, the construction of the fitness 
function, the definition of the genetic operators and 
the transfer scheme from GA to RSM. 

 
3.3.1 Genetic representation of solutions 
Each string represents a basic solution of a LP. A LP 
with n variables m constraints has m basic and n non-
basic variables. String length is m+n bits, where a bit 
1 represents a basic variable and a bit 0 is a non-basic 
variable. All strings have m bits 1 and n bits 0. Figure 
3 shows two examples of basic solutions for a LP 

with n=2 and m=4. In this approach, the artificial 
variables are avoided. 
 
3.3.2 Fitness function 
In this implementation, fitness function is an adaptive 
penalty function based in [21] and showed in (7), 
where )(xbi∆  is the violation for each constraint and 

max
ib∆  is the maximum of violation for constraint i in 

the population. 
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 procedure Simplex_Genetic; 
 begin 
    {*** Genetic phase ***} 
    iteration← 0;             
    Pick randomly an initial population P(0); 
    Evaluate the initial population  P(0); 
    s0

*← better of P(0);  fbetter
0 ← f(s0

*); 
    repeat 
        iteration← iteration+1; 
        Recombine P(iteration-1) to yield P(iteration); 
        Evaluate P(iteration); 
        siteration

*←better of P(iteration); 
         fbetter

iteration←f(siteration
*); 

    until fbetter
iteration-1 = fbetter

iteration; 
    {***Transition phase***} 
    Determine original B-1 (B-1

0 = I); 
    Ibasic←{i|i∈siteration

*∧( siteration
*)i=1}; 

    Construct a matrix T of A such that {Tj|j∈Ibasic}; 
    Apply i row operations in matrix [T|B-1

0] such that Ti=I; 
    B-1

better← B-1
i, the right side of matrix [Ti|B-1

i]; 
    Actualize C such that {cj=0|j∈Ibasic}; 
    Actualize b, xB and xNB with the i row operations,; 
    {***RSM phase***} 
    optimality← feasibility← true;  
    while not optimality∧feasibility do 
       RN← CBB-1N – CNB; 
       if RN > 0 then optimality←true; 
       else begin 
           select k as the entering variable such that  
   (RN)k is the minimum; 
           select j as the leaving variable as in (6); 
           if xj not exist then feasibility←false; 
           else Update xB, xNB and B-1; 
        end 
    end 
    if optimality then z←CBxB; 
 end 
 

Fig. 2. The Simplex Genetic Method. 
 

3.3.3 Genetic operators 
To create a new generation, a new chromosome is 
formed by merging two parents from a current 



generation using a tabu approach for the crossover 
operator and modifying a chromosome using a 
mutation operator. 
 

 
Fig. 3. Two examples of basic solution codified as binary 
string: bits 1 represent basic variables and bits 0 represent 
non-basic variables. 
 
Tabu approach for crossover operator. Crossover 
operator applies two operations: (a) Identical bits in 
parents are copied into the child in the same site, and 
(b) empty sites in the child are filled using a tabu list 
constructed according to the values of variables in 
infeasible solutions.  A tabu list is a set of forbidden 
moves allocated in a memory function that provide 
strategic forgetting [42]. In this case, tabu list is 
constructed by the average of the value of variables in 
infeasible solutions (variables with negative value). 
In figure 4, five infeasible solutions, the tabu list 
produced by them and the construction of a new 
solution are shown. Figure, 4-(a) shows five strings 
of infeasible solutions, while 4-(b) shows the values 
of these five solutions, and  4-(c) the tabu list (for 
instance, 1.5/5=0.3 is the average of negative values 
of the solutions). In 4-(d) two parents are shown, and 
4-(e) shows that the identical bits in the parents are 
copied. Using the tabu list, the empty sites in the 
child are filled in 4-(f); in this example, two zeroes 
are allocated in the sites where the tabu list has a high 
value, because this value indicates that these 
positions have been used by several infeasible 
solutions. This high value indicates that this variable, 
in infeasible solutions, is farther from the feasible 
region, too. This approach allows new solutions to be 
produced into the feasible region nearer to it. Tabu 
list is actualized in each generation.  
 

 
Fig. 4. (a), (b) and (c) shows the construction of tabu list, 
(d), (e) and (f) shows the use of tabu list for the creation of 
new chromosome. 
 
Mutation operator. This operator replaces a 
randomly chosen bit of a string with a different value. 

Mutation uses a permutation of two bits randomly 
selected in the string. In figure 5, a string with 4 basic 
and 3 non-basic variables is selected for applying the 
mutation. Two sites are selected (1 and 3, in this 
case), and the bits are permuted. 
 

 
Fig. 5. Mutation operator over a chromosome. 

 
3.3.4 Transfer scheme from GA to RSM (Gauss 
operator)  
The better solution produced by the GA will be the 
initial solution for the RSM. GA solution (binary 
string siteration

* in the algorithm shows in figure 2) is 
transformed as the initial elements for RSM (B-1

better, 
xB, xNB, C and b). The original B-1

0 is an identity 
matrix I (constructed for the coefficients of the slack 
variables in the restrictions). Matrix T is then 
constructed using several columns of the original 
matrix A, this selection is based on the binary string: 
an Aj column is used in T if the site in binary string is 
1. Matrix T is the actual Bbetter. Then, reducing T to I 
and applying the same row operations in the original 
B-1

0, the actual B-1
better is calculated [43]. This is the 

function of a new operator called Gauss operator. 
Formulas  (8)  and  (9)  show  how  B-1

better can be 
calculated using this Gauss operator. Figure 6 shows 
an example of this operator. 
 

Bbetterx  = Ib = B-1
0b 

x  = B-1
betterb 

(8) 
(9) 

 
The value of new C is produced changing the cj 
values by zeroes, if j is the index of a new basic 
variable. Vector b is actualized applying the same 
row operations used in the T reduction process. 
Finally, vectors xB and xNB are actualized. Gauss 
operator avoids the direct calculus of B-1

better.  
 

 
Fig. 6. An example of the gauss operator over the values of 
matrix B-1 and to calculate its new value that is passed to 
RSM. 
 
4   Results 
The principal results obtained with the SGM are 
shown in figure 7. All tests were executed in an Intel 
Pentium II, 200 MHz PC. Figure 7 shows an 
exponential behavior of RSM with the number of 
variables, and the same for SGM; however the 



increased rate in the later is much smaller that the 
former, even for the worst case. It is clear that SGM 
has a substantial improvement over RSM for KMd. 
For this comparison, SGM was executed for many 
tests, and we reported the best and the worst case. 
From the experimental result for the KMd, it is 
observed that:  
1. RSM has a better behavior only when the number 
of variables is very small.  
2. The population size of SGM affects noticeably its 
execution time, so it is impractical for a few number 
of variables.  
3. SGM has a better behavior of RSM when the 
number of variables is bigger.  
 

 
Fig. 7. Behavior of RSM and SGM. 

 
 
5   Conclusions and future work 
This paper presents a hybrid approach for the solution 
of hard LP (as KMd), using a GA inside optimum 
solution search procedure.  Both RSM and SGM were 
implemented and the results suggest that SGM has 
better behavior that SM for this type of problems. 
The codification scheme developed for SGM allows 
representing a basic solution as a string that can be 
used with a genetic approach. In the SGM is avoided 
the first phase of the original method, because the 
genetic phase finds the initial solution for the simplex 
procedure, and this implies that the artificial variables 
are not used. 
 As an extension of this work, concerning the 
application of genetic operators, an additional effort 
can be conducted for tuning up the algorithm, finding 
the values of operators probabilities for improving the 
SGM performance. Another extension is the study of 
better procedures to obtain the function objective 
value. 
 The comparison of SGM and RSM can be extended 
including other approach in SGM, as those given by 
criss-cross methods or random methods for linear 
programming. 
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