
Dynamic Analysis of the Java Virtual Machine
Method Invocation Architecture

SIOBHÁN BYRNE CHARLES DALY
Ericsson Telecom, Dun Laoghaire, Computer Applications, Dublin City University,

Co.Dublin, IRELAND. Dublin 9, IRELAND.

DAVID GREGG JOHN WALDRON
Computer Science, Trinity College Dublin, Computer Science, Trinity College Dublin,

Dublin 2, IRELAND. Dublin 2, IRELAND.

Abstract: - Platform independent dynamic analysis has been shown to be an important technique for
performance analysis and workload characterization of programs that run on the Java Virtual Machine. In this
paper we explore how this methodology can me used to study method invocation. We identify differences in
program behaviour and propose a metric to predict dynamic compilation efficiency.

Key-Words: - Java Virtual Machine, method invocation, performance analysis, workload characteriza-
tion

1 Introduction

The Java paradigm for executing programs is a two
stage process. Firstly the source is converted into
a platform independent intermediate representation,
consisting of bytecode and other information stored
in class files [15]. The second stage of the process
involves hardware specific conversions, perhaps by a
JIT or hotspot compiler for the particular hardware
in question, followed by the execution of the code.
This research extends existing research involving dy-
namic analysis at the platform independent bytecode
level [7], and investigates how the method invoca-
tion architecture is dynamically used by real programs
from two widely used benchmark suites — the SPEC
JVM98 benchmark suite [20] and the Java Grande Fo-
rum Benchmark Suite [5].

The increasing prominence of internet technology,
and the widespread use of the Java programming lan-
guage has given the Java Virtual Machine (JVM) an

important position in the study of compilers and re-
lated technologies. To date, much of this research has
concentrated in two main areas:

� Static analysis of Java class files, for purposes
such as optimisation [22], compression [3], soft-
ware metrics [6], or the extraction of object mod-
els [11]

� The performance of the bytecode interpreter,
yielding techniques such as Just-In-Time (JIT)
compilation [1] and hotspot-centered compila-
tion [21]. See [12] for a survey.

2 Benchmark Suites

The SPEC JVM98 [20] suite was designed as an
industry-standard benchmark suite for measuring the
performance of client-side Java applications, and we
have used the seven main programs from this suite
(see Figure 1). Some of the programs from the SPEC



The Java Grande Forum Benchmark Suite Large Scale Applications
eul Computational Fluid Dynamics
mol Molecular Dynamics simulation
mon Monte Carlo simulation
ray 3D Ray Tracer
sea Alpha-beta pruned search

Standard Performance Evaluation Corporation JVM98 Benchmarks
compress Modified Lempel-Ziv method (LZW)
db Performs multiple database functions on memory resident database
jack A Java parser generator that is based on PCCTS
javac This is the Java compiler from the JDK 1.0.2.
jess Java Expert Shell System is based on NASA’s CLIPS expert shell system
mpeg Decompresses ISO MPEG Layer-3 audio files
mtrt A raytracer with two threads each rendering a scene

Figure 1: The programs used in this analysis. There were 12 programs in total, taken from the Java Grande
Forum sequential benchmarks and from the SPEC JVM98 benchmarks.

suite are distributed in bytecode format only. The
Java Grande Forum Benchmark suite is distributed in
source code format. For this study, these programs
were compiled using the Java compiler from SUN’s
JDK, version 1.3 (see Figure 1).

We believe the suites chosen are as close as possi-
ble to “standard” based on published results. Many
other suites of benchmark programs for Java exist,
including micro-benchmarks such as CaffeineMark
[17] Richards and DeltaBlue [24]. As these measure
small, repetitive operations, it was felt that their re-
sults would not be typical of Java applications. For
the same reason larger suites, designed to test Java’s
threads or server-side applications, such as SPEC’s
Java Business Benchmarks (SPECjbb2000), the Java
Grande Forum’s Multi-threaded Benchmarks, IBM’s
Java Server benchmarks [4] or VolanoMark [16] have
not been included at this point.

Studies of the SPEC and Grande suites have con-
centrated on performance issues for various JVMs.
Studies of the Grande suite include performance-
related measures such as [5], as well as dynamic byte-
code level views [7]. There have been a number of
studies of the SPEC JVM98 benchmark suite. [20]
provides speed comparisons of the suite using dif-
ferent Java Platforms, and [10] examines the speed
impact of various optimisations. [9] uses the SPEC
JVM98 suite in an examination the prediction rate
achieved by invoke-target and other predictors. Both

Program Classes Program % API %
loaded

Compress 95 17.9 82.1
JESS 236 58.9 41.1
Database 96 8.3 91.7
javac 237 61.2 38.8
mpegaudio 127 37.8 62.2
mtrt 112 26.8 73.2
jack 140 37.1 62.9
ave 149 35.4 64.6

Table 1: Measurements of total number of classes
loaded by SPEC JVM98 applications Also shown is
the percentage of the total which are in the API and
the program itself.

[14] and [18] discuss low-level timing and cache per-
formance for the suite. [19] also looks at cache
misses, but from the perspective of the SPEC JVM98
programs’ memory behaviour. This theme is investi-
gated in depth in [8], which studies the allocation be-
haviour of the SPEC JVM98 suite from the perspec-
tive of memory management. Both [19] and [26] note
that the SPEC JVM98 suite may not be suitable for
assessing all types of Java applications.

3 Methodology

The data presented in this paper were gathered
by running each of the programs independently on
a modified JVM. The JVM used was Kaffe [23], an



Program Classes Program % API %
loaded

eul 96 7.3 92.7
mol 96 7.3 92.7
mon 104 15.4 84.6
ray 95 15.8 84.2
sea 87 9.2 90.8
ave 95 11.0 89.0

Table 2: Measurements of total number of classes
loaded by Grande applications compiled using SUNs
javac compiler, Standard Edition (JDK build 1.3.0-
C). Also shown is the percentage of the total which
are in the API and the program itself.

Program Methods Program % API % native %
invoked

Compress 343 16.6 83.4 9.6
JESS 798 52.4 47.6 5.0
Database 398 12.6 87.4 8.5
javac 1136 65.5 34.5 3.5
mpegaudio 506 43.9 56.1 6.9
mtrt 509 34.8 65.2 8.6
jack 613 46.7 53.3 5.4
ave 614 38.9 61.1 6.8

Table 3: Measurements of total number of methods
invoked at least once by SPEC JVM98 applications.
Also shown is the percentage of the total which are in
the API, native and the program itself.

Program Methods Program % API % native %
invoked

eul 379 10.0 90.0 12.1
mol 362 9.7 90.3 11.3
mon 438 24.0 76.0 10.0
ray 356 18.3 81.7 10.7
sea 319 12.2 87.8 11.0
ave 370 14.8 85.2 11.0

Table 4: Measurements of total number of methods in-
voked at least once by Grande applications compiled
using SUNs javac compiler, Standard Edition (JDK
build 1.3.0-C). Also shown is the percentage of the to-
tal which are in the API, native and the program itself.

independent cleanroom implementation of the JVM,
distributed under the GNU Public License. Version
1.0.6 of Kaffe was used. Other approaches to trac-
ing the execution of Java programs include bytecode-
level instrumentation [13], and special-purpose JVMs
such as SUN’s Tracing JVM [25] and IBM’s Jikes
Research Virtual Machine, a development of the
Jalapeño Virtual Machine [2].

While Kaffe can be built to emit debugging infor-
mation, we modified its source to collect information
more directly suited to our purposes. We added a
hash table dictionary with full method names as keys,
and dynamically counted each invocation and byte-
code executed by for all methods.

We distinguished methods in the Kaffe library by
noting the name beginning with java/ or kaffe/. It
should be noted that all measurements in this chap-
ter were made with the Kaffe class library. This li-
brary may not be 100% compliant with SUN’s JDK,
but runs all the programs studied successfully. Plat-
form independent dynamic analysis does not depend
on the virtual machine used, but measures the meth-
ods and bytecodes executed by the both the program
and the standard library. The API measurements re-
ported here may therefore differ from other Java class
libraries. In subsequent sections we will distinguish
between code from the (Kaffe) class library and “pro-
gram” i.e. those bytecodes from the SPEC JVM98 or
Grande benchmark suites.

4 Analysis and Conclusions

Tables 1 and 2 show measurements of total number
of classes loaded by SPEC JVM98 and Grande ap-
plications. Also shown is the percentage of the total
which are in the API and the particular program itself.
Tables 3 and 4 show measurements of total number of
methods invoked at least once by SPEC JVM98 and
Grande applications. Also shown is the percentage
of the total which are in the API and the particular
program itself. On average close to 4 methods are in-
voked at least once for each class loaded.

The first thing that stands out from Tables 2 and 4
is that while 89% of the classes loaded and 85% of the
methods invoked at least once by the Grande applica-
tions are in the API, only 7.7% of the bytecodes, as
has been shown in [7], are executed in the API. This



invoke invoke invoke invoke total
virtual special static interface

API
Compress 46.5 24.2 29.2 0.1 2.8e+04
JESS 45.1 36.4 18.5 0.0 2.7e+07
Database 5.6 26.9 67.5 0.0 3.3e+07
javac 45.3 22.7 21.2 10.9 7.2e+07
mpegaudio 61.9 21.4 16.6 0.0 5.1e+04
mtrt 61.1 28.8 10.1 0.0 3.6e+06
jack 27.2 46.9 14.1 11.8 8.7e+07
ave 41.8 29.6 25.3 3.3 3.2e+07

non-API
Compress 91.3 8.7 0.0 0.0 2.3e+08
JESS 85.0 9.2 5.1 0.7 1.1e+08
Database 83.1 0.2 0.1 16.5 9.0e+07
javac 78.5 15.2 2.1 4.2 8.0e+07
mpegaudio 72.1 26.6 1.2 0.2 1.1e+08
mtrt 94.5 5.4 0.1 0.0 2.8e+08
jack 62.5 10.9 11.8 14.8 2.9e+07
ave 81.0 10.9 2.9 5.2 1.3e+08

Total
Compress 91.3 8.7 0.0 0.0 2.3e+08
JESS 76.9 14.7 7.8 0.5 1.3e+08
Database 62.2 7.4 18.3 12.1 1.2e+08
javac 62.8 18.7 11.1 7.4 1.5e+08
mpegaudio 72.1 26.6 1.2 0.2 1.1e+08
mtrt 94.1 5.7 0.2 0.0 2.9e+08
jack 36.0 37.9 13.6 12.6 1.2e+08
ave 70.8 17.1 7.5 4.7 1.6e+08

Table 5: Measurements of total number of methods
invoked by SPEC JVM98 applications. Also shown is
the percentage of the total which are in the API and
the program itself.

invoke invoke invoke invoke total
virtual special static interface

API
eul 32.8 54.6 12.6 0.0 4.3e+05
mol 63.5 21.6 14.8 0.1 1.4e+04
mon 78.1 0.6 21.4 0.0 4.9e+07
ray 62.6 21.6 15.7 0.1 1.3e+04
sea 63.3 21.4 15.2 0.1 1.2e+04
ave 60.1 24.0 15.9 0.1 9.9e+06

non-API
eul 22.8 39.6 37.6 0.0 3.3e+07
mol 78.9 0.8 20.3 0.0 5.4e+05
mon 35.3 0.7 64.0 0.0 3.1e+07
ray 48.3 2.6 49.2 0.0 4.6e+08
sea 100.0 0.0 0.0 0.0 7.1e+07
ave 57.1 8.7 34.2 0.0 1.2e+08

Total
eul 22.9 39.8 37.3 0.0 3.3e+07
mol 78.5 1.3 20.1 0.0 5.5e+05
mon 61.5 0.6 37.9 0.0 8.1e+07
ray 48.3 2.6 49.2 0.0 4.6e+08
sea 100.0 0.0 0.0 0.0 7.1e+07
ave 62.2 8.9 28.9 0.0 1.3e+08

Table 6: Measurements of total number of methods
invoked by Grande applications compiled using SUNs
javac compiler, Standard Edition (JDK build 1.3.0-
C). Also shown is the percentage of the total which
are in the API and the program itself.



shows dramatically different dynamic behaviour be-
tween Java API library code and Grande programs.
It suggest that techniques such as dynamic [21] or
JIT [1, 10] compilation may be much more effective
when applied to Grande program code than to API
code. There is a significant variation in the ratio of
methods invoked at least once to bytecodes executed
percentages (Method to Bytecode Dynamic percent-
age, MBDP) exhibited by different categories of code,
and we believe this platform independent MBDP ra-
tio with indicate quantitatively the possible benefits
(or losses) that can be achieved during any platform
specific compilation phases.

The same MBDP variation, to a lesser extent, can
also be observed for SPEC JVM98 programs in Ta-
bles 1 and 3, where that average number of classes
loaded from the API by the SPEC suite is 65%, meth-
ods invoked at least once is 61%, but bytecodes exe-
cuted 34%.

Tables 5 and 6 show measurements of total num-
ber of methods invoked by SPEC JVM98 and Grande
applications. Also shown is the percentage of the to-
tal which are in the API and the program itself. It’s
interesting to see that non-API static methods are in-
significant for each of the SPEC programs, but are
quite significant for each of the Grande programs, ex-
cept sea. Since there’s been a considerable amount
of work done on optimizing virtual method calls, this
suggests that any resulting speed improvements will
not be as well reflected in the Grande suite.

It is possible to categorize invokespecial and in-
vokestatic together, since both of these types of call
can be bound as soon as the class is loaded. On
the other hand, both invokevirtual and invokeinterface
can only be bound when the call is made. It seems that
the API method call figures are then much the same
for both SPEC and Grande.

References

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-
Yuan Lueh, Vishesh M. Parikh, and James M.
Stichnoth. Fast, effective code generation in a
Just-In-Time Java compiler. In ACM SIGPLAN
Conference on Programming Language Design
and Implementation, pages 280–290, Montreal,
Canada, June 1998.

[2] B. Alpern, C.R. Attanasio, J.J. Barton, M.G.
Burke, P. Cheng, J.-D. Choi, A. Cocchi, S.J.
Fink, D. Grove, M. Hind, S.F. Hummel,
D. Lieber, V. Litvinov, M.F. Mergen, T. Ngo,
J.R. Russell, V. Sarkar, M.J. Serrano, J.C. Shep-
herd, S.E. Smith, V.C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine.
IBM Systems Journal, 39(1):211–238, February
2000.

[3] D. Antonioli and M. Pilz. Analysis of the Java
class file format. Technical Report 98.4, Dept.
of Computer Science, University of Zurich,
Switzerland, April 1988.

[4] S.J. Baylor, M. Devarakonda, S.J. Fink,
E. Gluzberg, M. Kalantar, P. Muttineni,
E. Barsness, R. Arora, R. Dimpsey, and S. J.
Munroe. Java server benchmarks. IBM Systems
Journal, 39(1):57–81, 2000.

[5] M. Bull, L. Smith, M. Westhead, D. Henty, and
R. Davey. Benchmarking Java Grande applica-
tions. In Second International Conference and
Exhibition on the Practical Application of Java,
Manchester, UK, April 2000.

[6] T. Cohen and J. Gil. Self-calibration of met-
rics of Java methods. In Technology of Object-
Oriented Languages and Systems, pages 94–
106, Sydney, Australia, November 2000.

[7] Charles Daly, Jane Horgan, James Power, and
John Waldron. Platform independent dynamic
Java virtual machine analysis: the Java Grande
Forum Benchmark Suite. In Joint ACM Java
Grande - ISCOPE 2001 Conference, pages 106–
115, Stanford, CA, USA, June 2001.

[8] Sylvia Dieckmann and Urs Hölzle. A study of
the allocation behaviour of the SPECjvm98 Java
benchmarks. In 13th European Conference on
Object Oriented Programming, pages 92–115,
Lisbon, Portugal, June 1999.

[9] Karel Driesen, Patrick Lam, Jerome
Miecznikowski, Feng Qian, and Derek Rayside.
On the predictability of invoke targets in Java
byte code. In 2nd Workshop on Hardware



Support for Objects and Microarchitecture for
Java, Austin, Texas, 17 September 2000.

[10] Kazuaki Ishizaki, Motohiro Kawahito, Toshi-
aki Yasue, Mikio Takeuchi, Takeshi Ogasawara,
Toshio Suganuma, Tamiya Onodera, Hideaki
Komatsu, and Toshio Nakatani. Design, im-
plementation and evaluation of optimisations in
a Just-In-Time compiler. In ACM 1999 Java
Grande Conference, pages 119–128, San Fran-
cisco, CA, USA, June 1999.

[11] Daniel Jackson and Allison Waingold.
Lightweight extraction of object models
from bytecode. IEEE Transactions on Software
Engineering, 27(2):194–202, Feb 2001.

[12] I.H. Kazi, H.H. Chan, B. Stanley, and D.J.
Lilja. Techniques for obtaining high perfro-
mance in Java programs. ACM Computing Sur-
veys, 32(3):213–240, September 2000.

[13] Han Bok Lee. BIT: A tool for instrumenting
Java bytecodes. In USENIX Symposium on In-
ternet Technologies and Systems, pages 73–82,
Monterey, California, U.S.A., December 1997.

[14] Tao Li, Lizy Kurian John, Vijaykrishnan
Narayanan, Anand Sivasubramaniam, Jyotsna
Sabarinathan, and Anupama Murthy. Us-
ing complete system simulation to characterize
SPECjvm98 benchmarks. In International Con-
ference on Supercomputing, pages 22–33, Santa
Fe, NM, USA, May 2000.

[15] Tim Lindholm and Frank Yellin. The Java Vir-
tual Machine Specification. Addison Wesley,
1996.

[16] John Neffenger. The Volano report: Which Java
platform is fastest, most scalable? JavaWorld,
March 1999.

[17] Pendragon. CaffeineMark 3.0. Pendragon
Software Corporation, http://www.pendragon-
software.com/pendragon/cm3/, 13 May 1999.

[18] R. Radhakrishnan, N. Vijaykrishnan, L.K. John,
A. Sivasubramaniam, J. Rubio, and J. Sabari-
nathan. Java runtime systems: Characterization

and architectural implications. IEEE Transac-
tions on Computers, 50(2):131–146, February
2001.

[19] Yefim Shuf, Mauricio J. Serrano, Manish Gupta,
and Jaswinder Pal Singh. Characterizing the
memory behavior of Java workloads: a struc-
tured view and opportunities for optimizations.
In Joint International Conference on Measure-
ments and Modeling of Computer Systems,
pages 194–205, Cambridge, MA, USA, June
2001.

[20] SPEC. SPEC releases SPECjvm98,
first industry-standard benchmark for
measuring Java virtual machine perfor-
mance. Press Release, 19 August 1998.
http://www.specbench.org/osg/jvm98/-
press.html.

[21] Sun Microsystems. The Java HotSpot vir-
tual machine. Technical White Paper,
http://java.sun.com/products/hotspot/, 7
November 2001.

[22] Raja Vallee-Rai, Laurie Hendren, Vijay Sun-
daresan, Patrick Lam, Etienne Gagnon, and
Phong Co. Soot - a Java optimization frame-
work. In 9th NRC/IBM Center for Advanced
Studies Conference, pages 125–135, Toronto,
Canada, November 1999.

[23] T.J. Wilkinson. KAFFE, A Virtual Machine to
run Java Code. http://www.kaffe.org, July 2000.

[24] Mario Wolczko. Benchmarking Java with
Richards and DeltaBlue. Sun Microsystems
Laboratories, http://www.sun.com/research/-
people/mario/java benchmarking/, 2001.

[25] Mario Wolczko. The Tracing JVM.
Sun Microsystems Laboratories,
http://www.experimentalstuff.com/-
Technologies/TracingJVM, 19 April 2001.

[26] Xiaolan Zhang and Margo I. Seltzer. HBench:
Java: an application-specific benchmarking
framework for Java virtual machines. In ACM
Java Grande Conference, pages 62–70, San
Francisco, CA, USA, June 2000.


