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Abstract: -In this work, we present a discrete fractional Gabor representation on a general, non-rectangular time-
frequency lattice. The traditional Gabor expansion represents a signal in terms of time and frequency shifted basis
functions, called Gabor logons. This constant-bandwidth analysis uses a fixed, and rectangular time-frequency
plane tiling. Many of the practical signals require a more flexible, non-rectangular time-frequency lattice for a
compact representation. The proposed fractional Gabor method uses a set of basis functions that are related to
the fractional Fourier basis and generate a non-rectangular tiling. Simulation results are presented to illustrate the
performance of our method.
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1 Introduction
Time—frequency (TF) analysis provides a characteri-
zation of signals in terms of joint time and frequency
content [1]. One of the fundamental issues in the TF
analysis is obtaining the distribution of signal energy
over joint TF plane with a delta function concentra-
tion [1]. The discrete Gabor expansion is a TF sig-
nal decomposition which represents a signal in terms
of time and frequency translated basis functions called
TF atoms [2, 3]. Gabor basis functions, ;(n) are
obtained by shifting and modulating with a sinusoid a
single window functiory(n), which results in a fixed
and rectangular TF plane tiling. However, if the signal 2  The Discrete Gabor Expansion
to be represented is not modeled well by this constant-The traditional Gabor expansion [2, 3] represents a sig-
bandwidth analysis, its Gabor representation displaysnal in terms of time and frequency shifted basis func-
poor TF localization [4, 5, 6]. Many of the practical tions, and has been used in various applications to an-
signals such as speech, music, biological, and seismi@lyze the time—varying frequency content of a signal
signals have time-varying frequency nature that is not[9]. Basis functions of the Gabor representation are
obtained by translating and modulating with sinusoids
L This work was supported by the Research Fund of The Uni- @ Single window function.The discrete Gabor expan-
versity of Istanbul, Project numbe®-962/15032001. sion of a finite-support signal(n), 0 <n < N —1is

appropriate for sinusoidal analysis [4, 6]. Thus the tra-
ditional Gabor expansion of such signals will require
large number of coefficients yielding a poor TF lo-
calization. The compactness of the Gabor representa-
tion is improved if the basis functions match the time-
varying frequency behavior of the signal [6, 7, 8]. Here
we present a new, fractional Gabor expansion that uses
a more flexible, non—rectangular TF lattice. The basis
functions of the proposed expansion are related to the
fractional Fourier basis.




given by [3] orthogonality condition between the analysis and syn-
thesis basis sets via the discrete Poisson-sum formula
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where the basis function g v K e ©
Gm.k(n) = §(n — mL) " ) for0 <m < L'—-1, 0<k<L-—1. The anal-

ysis window~y(n) is obtained by solving the equation

andwy, = 27kL’/N. The Gabor expansion parameters system of the above biorthogonality condition.
M, K, L, and L’ are positive integers constrained by Gabor analysis basigy,, »(n)} with a fixed win-
ML = KL' = N whereM andK are the number of dow and sinusoidal modulation tiles the time—frequency
analysis samples in time and frequency, respectively,plane in a rectangular fashion causing a constant band-
andL andL’ are the time and frequency steps, respec-width analysis. Constant bandwidth methods, such as
tively. Existence, uniqueness and numerical stability spectrogram [1] and the Gabor expansion provide sig-
of the representation depend on the choice of paramenal representations with poor time—frequency resolu-
tersL andL’. For numerically stable representations, tion [4]. Recently, representations on a non—rectangular
L and L’ must satisfyL. L’ < N, or equivalently that TF grid has attracted a considerable attention [6, 10].
L < K. The case wheré = K, is called the criti- A non-rectangular lattice is more appropriate for the
cal sampling, and the cade < K is called the over- TF analysis of signals with time—varying frequency
sampling. The synthesis windogyn) is a periodic ~ content. Thus the motivation for a fractional Gabor
extension (byN) of gn) which is normalized to unit ~ analysis.
energy for definiteness [3].

In general, the set of time and frequency shifted 3 A Fractional Gabor Expansion
window functions, i.e., Gabor logon§j,,, ()} forms ~ We define a discrete fractional Gabor expansion for
a non-orthogonal basis for the square—summable sex(n), 0 <n < N — 1, as follows:

quences spad®(R). Hence the calculation of the Ga- Me1 K—-1
bor coefficients is not a simple task since projection by z(n) = Z Z Cmka Gk (T0) (7)
the usual inner product cannot be used. One of the m=0 k=0

methods [3], uses an auxiliary functioiin) calledthe  \yherec, ., . are the fractional Gabor coefficientsis

biorthogonal window or dual function af(n). Then  he order of the fraction, and the basis functions are
the Gabor coefficientc,, ;. } can be evaluated by
Gmka(n) = gn —mL) Wy k(n)

N-1
Com ke = Z z(n) A 1 (n) (3) Hereg(n) is a periodic version of a unit energy Gabor
n=0 ’ window g(n) andW, i (n) is the fractional kernel,
where the analysis functions are War(n) = el 5 (n®+(wy sin @)?) cot atwgn]
Amp(n) = F(n — mL) k" (4)  wherew, = 27k/K. The kernel above is similar to

the Fractional Fourier Series basis functions [11]. The
where agair(n) is a periodic version of the dual win-  expansion in (7) reduces to the traditional Gabor for
dow v(n). Completeness condition of the basis set is o = /2. The parametera/, K, L, andL’, are same
obtained by substituting (3) into (1) to get that as in the traditional Gabor expansion. In our deriva-
tions, we always consider the general, oversampled

M—-1K-1
Z Z G () 75 L (0) = 8(n — €) (5) case, i.e.L < K. The Gabor coefficients can be eval-
== " uated as before by

. . N-1

whered(-) denotes the Dirac delta function. The above s

( ) Cm ko = Z LE(TL) ’Ym,k,a(n) (8)

completeness relation yields equivalent but simpler bi- s



where the analysis functions are Sythesis window g(n)

Fmk,a(n) =F(n —mL) W r(n)

Amplitude

andy(n) is periodic version of ay(n) that is solved

from a fractional biorthogonality condition betweg(m) 0 po " - - o o

Analysis window y(n)

andvy(n).
The completeness condition for the fractional Ga-
bor basis, is obtained by substituting (8) in (7),
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Fig. 1. A Gauss synthesis window (top figure), and
its biorthogonal windows in critical (middle) and over-
sampling (bottom) cases.

Then we obtain that the windows must satisfy the fol-
lowing completeness relation:

M-1K-1

g(n — mL)y* (¢ — mL ej[_%(RQ—ZQ)cota} . .
mZ::O "; " )M ) 4 Simulation Results

% e wr(n—0) _ S(n — ¢ (9) We consider a signal composed of two linear chirps.
Using our fractional Gabor method, we analyzed the
The fractional biorthogonality condition that we need signal with two different fractional orders. Figs. 2 and
to solve the analysis or dual functierin) is obtained 3 show the magnitude squared fractional Gabor coeffi-
from the above completeness relation using discretecients,|c,, k «|?, Of this two-chirp signal withw = /4

Poisson sum formula as anda = 37/8 respectively. Notice that, the compo-
No1 nent that is matched by the analysis angle becomes a
Z G (n+ mK)ejk%"(nerK)ﬁ(n) narrow-band signal and represented with higher reso-
n=0 lution.
j(nmK m?K? cot L
S 5 Conclusions
0<m<L -1, 0<k<L-1 (10) In this paper, we present a discrete fractional Gabor ex-

pansion on a flexible, non-rectangular TF plane for the
Completeness and biorthogonality conditions given in anajysis of non—stationary signals. We give the com-
equations (9) and (10) reduce to the conditions in thep|eteness and biorthogonality conditions of this new
traditional case [3] fon = /2. This indicates that  expansion. Simulations show that the fractional ex-
the above fractional expansion is a generalization of yansijon gives high resolution representations.
the discrete Gabor expansion. In Fig. 1, we show

a Gauss windowjy(n),n = 0,1,---,127 on the top
figure, and its biorthogonal(n) for two different set
of sampling parameters obtained by solving equation [1] Cohen, L., Time-Frequency AnalysisPrentice
(10) with &« = 7 /4. The window in the middle is ob- Hall, Englewood Cliffs, NJ, 1995.

tained usingl. = 16, K = 16 that is the critical sam-

pling and the window at the bottom is calculated with [2] Gabor, D., “Theory of CommunicationJ. IEE,
L = 8, K = 64 as an example of the oversampling. Vol. 93, pp. 429-459, 1946.
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Fig. 3. Gabor coefficients using = 37/8.



