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Abstract: -In this work, we present a discrete fractional Gabor representation on a general, non-rectangular time-
frequency lattice. The traditional Gabor expansion represents a signal in terms of time and frequency shifted basis
functions, called Gabor logons. This constant-bandwidth analysis uses a fixed, and rectangular time-frequency
plane tiling. Many of the practical signals require a more flexible, non-rectangular time-frequency lattice for a
compact representation. The proposed fractional Gabor method uses a set of basis functions that are related to
the fractional Fourier basis and generate a non-rectangular tiling. Simulation results are presented to illustrate the
performance of our method.

Key-Words: -Time-frequency analysis, Gabor expansion, Fractional Fourier Transform.

1 Introduction
Time–frequency (TF) analysis provides a characteri-
zation of signals in terms of joint time and frequency
content [1]. One of the fundamental issues in the TF
analysis is obtaining the distribution of signal energy
over joint TF plane with a delta function concentra-
tion [1]. The discrete Gabor expansion is a TF sig-
nal decomposition which represents a signal in terms
of time and frequency translated basis functions called
TF atoms [2, 3]. Gabor basis functionsgm,k(n) are
obtained by shifting and modulating with a sinusoid a
single window functiong(n), which results in a fixed
and rectangular TF plane tiling. However, if the signal
to be represented is not modeled well by this constant-
bandwidth analysis, its Gabor representation displays
poor TF localization [4, 5, 6]. Many of the practical
signals such as speech, music, biological, and seismic
signals have time-varying frequency nature that is not
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appropriate for sinusoidal analysis [4, 6]. Thus the tra-
ditional Gabor expansion of such signals will require
large number of coefficients yielding a poor TF lo-
calization. The compactness of the Gabor representa-
tion is improved if the basis functions match the time-
varying frequency behavior of the signal [6, 7, 8]. Here
we present a new, fractional Gabor expansion that uses
a more flexible, non–rectangular TF lattice. The basis
functions of the proposed expansion are related to the
fractional Fourier basis.

2 The Discrete Gabor Expansion
The traditional Gabor expansion [2, 3] represents a sig-
nal in terms of time and frequency shifted basis func-
tions, and has been used in various applications to an-
alyze the time–varying frequency content of a signal
[9]. Basis functions of the Gabor representation are
obtained by translating and modulating with sinusoids
a single window function.The discrete Gabor expan-
sion of a finite-support signalx(n), 0 ≤ n ≤ N − 1 is



given by [3]

x(n) =
M−1∑

m=0

K−1∑

k=0

cm,k g̃m,k(n) (1)

where the basis function

g̃m,k(n) = g̃(n−mL) ejωkn (2)

andωk = 2πkL′/N . The Gabor expansion parameters
M , K, L, andL′ are positive integers constrained by
ML = KL′ = N whereM andK are the number of
analysis samples in time and frequency, respectively,
andL andL′ are the time and frequency steps, respec-
tively. Existence, uniqueness and numerical stability
of the representation depend on the choice of parame-
tersL andL′. For numerically stable representations,
L andL′ must satisfyL L′ ≤ N , or equivalently that
L ≤ K. The case whereL = K, is called the criti-
cal sampling, and the caseL < K is called the over-
sampling. The synthesis window̃g(n) is a periodic
extension (byN ) of g(n) which is normalized to unit
energy for definiteness [3].

In general, the set of time and frequency shifted
window functions, i.e., Gabor logons,{g̃m,k(n)} forms
a non–orthogonal basis for the square–summable se-
quences spacè2(R). Hence the calculation of the Ga-
bor coefficients is not a simple task since projection by
the usual inner product cannot be used. One of the
methods [3], uses an auxiliary functionγ(n) called the
biorthogonal window or dual function ofg(n). Then
the Gabor coefficients{cm,k} can be evaluated by

cm,k =
N−1∑

n=0

x(n) γ̃∗m,k(n) (3)

where the analysis functions are

γ̃m,k(n) = γ̃(n−mL) ejωkn (4)

where agaiñγ(n) is a periodic version of the dual win-
dow γ(n). Completeness condition of the basis set is
obtained by substituting (3) into (1) to get that

M−1∑

m=0

K−1∑

k=0

g̃m,k(n) γ̃∗m,k(`) = δ(n− `) (5)

whereδ(·) denotes the Dirac delta function. The above
completeness relation yields equivalent but simpler bi-

orthogonality condition between the analysis and syn-
thesis basis sets via the discrete Poisson-sum formula
[3]:

N−1∑

n=0

g̃(n + mK)e−j 2π
L

kn γ̃∗(n) =
L

K
δmδk (6)

for 0 ≤ m ≤ L′ − 1, 0 ≤ k ≤ L − 1. The anal-
ysis windowγ(n) is obtained by solving the equation
system of the above biorthogonality condition.

Gabor analysis basis{γ̃m,k(n)} with a fixed win-
dow and sinusoidal modulation tiles the time–frequency
plane in a rectangular fashion causing a constant band-
width analysis. Constant bandwidth methods, such as
spectrogram [1] and the Gabor expansion provide sig-
nal representations with poor time–frequency resolu-
tion [4]. Recently, representations on a non–rectangular
TF grid has attracted a considerable attention [6, 10].
A non–rectangular lattice is more appropriate for the
TF analysis of signals with time–varying frequency
content. Thus the motivation for a fractional Gabor
analysis.

3 A Fractional Gabor Expansion
We define a discrete fractional Gabor expansion for
x(n), 0 ≤ n ≤ N − 1, as follows:

x(n) =
M−1∑

m=0

K−1∑

k=0

cm,k,α g̃m,k,α(n) (7)

wherecm,k,α are the fractional Gabor coefficients,α is
the order of the fraction, and the basis functions are

g̃m,k,α(n) = g̃(n−mL) Wα,k(n)

Hereg̃(n) is a periodic version of a unit energy Gabor
windowg(n) andWα,k(n) is the fractional kernel,

Wα,k(n) = ej[− 1
2
(n2+(ωk sin α)2) cot α+ωkn]

whereωk = 2πk/K. The kernel above is similar to
the Fractional Fourier Series basis functions [11]. The
expansion in (7) reduces to the traditional Gabor for
α = π/2. The parametersM , K, L, andL′, are same
as in the traditional Gabor expansion. In our deriva-
tions, we always consider the general, oversampled
case, i.e.,L < K. The Gabor coefficients can be eval-
uated as before by

cm,k,α =
N−1∑

n=0

x(n) γ̃∗m,k,α(n) (8)



where the analysis functions are

γ̃m,k,α(n) = γ̃(n−mL) Wα,k(n)

and γ̃(n) is periodic version of aγ(n) that is solved
from a fractional biorthogonality condition betweeng(n)
andγ(n).

The completeness condition for the fractional Ga-
bor basis, is obtained by substituting (8) in (7),

x(n) =
M−1∑

m=0

K−1∑

k=0

(
N−1∑

`=0

x(`) γ̃∗(`−mL) W ∗
α,k(`)

)

× g̃(n−mL)Wα,k(n)

=
N−1∑

`=0

M−1∑

m=0

K−1∑

k=0

g̃(n−mL)γ̃∗(`−mL)

× ej[− 1
2
(n2−`2) cot α+ωk(n−`)]

Then we obtain that the windows must satisfy the fol-
lowing completeness relation:

M−1∑

m=0

K−1∑

k=0

g̃(n−mL)γ̃∗(`−mL)ej[− 1
2
(n2−l2) cot α]

× ej ωk(n−`) = δ(n− `) (9)

The fractional biorthogonality condition that we need
to solve the analysis or dual functionγ(n) is obtained
from the above completeness relation using discrete
Poisson sum formula as

N−1∑

n=0

g̃∗(n + mK)ejk 2π
L

(n+mK)γ̃(n)

×ej(nmK+m2K2

2
) cot α =

L

K
δmδk

0 ≤ m ≤ L′ − 1, 0 ≤ k ≤ L− 1 (10)

Completeness and biorthogonality conditions given in
equations (9) and (10) reduce to the conditions in the
traditional case [3] forα = π/2. This indicates that
the above fractional expansion is a generalization of
the discrete Gabor expansion. In Fig. 1, we show
a Gauss windowg(n), n = 0, 1, · · · , 127 on the top
figure, and its biorthogonalγ(n) for two different set
of sampling parameters obtained by solving equation
(10) with α = π/4. The window in the middle is ob-
tained usingL = 16, K = 16 that is the critical sam-
pling and the window at the bottom is calculated with
L = 8,K = 64 as an example of the oversampling.
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Fig. 1. A Gauss synthesis window (top figure), and
its biorthogonal windows in critical (middle) and over-
sampling (bottom) cases.

4 Simulation Results
We consider a signal composed of two linear chirps.
Using our fractional Gabor method, we analyzed the
signal with two different fractional orders. Figs. 2 and
3 show the magnitude squared fractional Gabor coeffi-
cients,|cm,k,α|2, of this two-chirp signal withα = π/4
andα = 3π/8 respectively. Notice that, the compo-
nent that is matched by the analysis angle becomes a
narrow-band signal and represented with higher reso-
lution.

5 Conclusions
In this paper, we present a discrete fractional Gabor ex-
pansion on a flexible, non–rectangular TF plane for the
analysis of non–stationary signals. We give the com-
pleteness and biorthogonality conditions of this new
expansion. Simulations show that the fractional ex-
pansion gives high resolution representations.
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Fig. 2. Gabor coefficients of the two-chirp signal using
fractional orderα = π/4.
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Fig. 3. Gabor coefficients usingα = 3π/8.


