
On Dynamic Fragmentation of Distributed Databases Using Partial
Replication

DAVID PINTO, GUADALUPE TORRES

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla

Blvd. Valsequillo y 14 Sur, Ciudad Universitaria
MEXICO

Abstract: - This paper addresses the problem of dynamically reallocating data in a partionable distributed
database with changing access patterns. Traditionally, fragmentation in distributed databases has been
determined by off-line analysis and optimization, however, there are some enterprises having users accessing
their databases under changing access patterns. Comisión Federal de Electricidad (CFE) is one of them that
has required an approach to dynamic fragmentation, i.e., an algorithm that can reallocate data while database is
on-line. We describe the algorithm used in this case and finally, we indicate the current status of
implementation.

Key-Words: - Distributed Database Systems, Horizontal Fragmentation, Partial Replication.

1 Introduction
We can think Database Distributed Systems (DDS)
as a union of two efforts: databases and computer
networks. A DDS is a collection of processes that
manage with transparency multiples distributed
databases logically related on a computer network.
 Data allocation is a critical aspect of distributed
database systems: a poorly-designed data allocation
can lead to inefficient computation, high access
costs, and high network loads [1, 2] whereas a well-
designed data allocation can enhance data
availability, diminish access time, and minimize
overall usage of resources [1, 3]. It is thus very
important to provide distributed database systems
with an efficient means of achieving effective data
allocation.
 In order to distribute data in a distributed
database, we need to use fragmentation of
information. As we explain after, there are three
kinds of fragmentation: vertical, horizontal and
mixed. In this paper we describe a project that use
horizontal fragmentation with partial replication. To
determine the place of replicated data, we use user’s
frequency access.
 We also proposed a search technique called
slave-master search (SMS) to reduce the search
space to two computers only.

2 Problem Formulation
CFE is an enterprise that provides automatic
cashiers so that its users can may their payment.
This cashiers are distributed around the city, but at

this moment, when a user would check their
payment, the system verify into centralized database
(regional) to know the status of this client. However,
it is very usual that the connection between the
cashier and the centralized database is broken, and
therefore the client cannot do the payment, specially
at weekends.
 CFE has distributed their database in regions,
assuming that each user should pay near by their
address, but, often each user used to pay near by
their job or maybe their parent’s job. So, it seems
that we cannot determine off-line the distribution of
database fragments.
 Based on the above requirements, it is necessary
to design an application that can improve
performance of data access.
 As we know, every database is build to provide
users high availability of data, however, a major cost
in executing queries in a distributed database is the
data transfer cost incurred in transferring multiple
database objects (fragments).

2.1 Fragmentation
The objective of fragmentation is to determine
fragments to locate at different sites so as to
minimize the total data transfer cost incurred in
executing a set of queries.
 Three kinds of fragmentation can be applied to a
relation in a database: Vertical Fragmentation,
Horizontal Fragmentation and Mixed
Fragmentation.

2.1.1 Vertical Fragmentation
Vertical fragments are created by dividing a global
relation R on its attributes by applying the project
operator:

Rj = Π {Aj},key R, where 1 ≤ j ≤m (1)

where {Aj} is a set of attributes not in the primary
key, upon which the vertical fragment is defined and
m is the maximum number of fragments.
 A vertical fragmentation schema is complete
when every attribute in the original global relation
can be found in some vertical fragment defined on
that relation. Then the reconstruction rule is satisfied
by a join on the primary key(s):

∀Rj ∈ {R1, R2, …, Rm} : R = ►◄key Rj (2)

The disjoint ness rule does not apply in a strict sense
to vertical fragmentation as the reconstruction rule
can only be satisfied when the primary key is
included in each fragment. So excluding the primary
key, no data item should occur in more than one
vertical fragment [1, 9].

2.1.1 Horizontal Fragmentation
Horizontal fragmentation divides a global relation R
on its tuples by use of the selection operator:

Rj = σPj (R), where 1 ≤ j ≤m (3)

 where Pj is the selection condition as a simple
predicate and m is the maximum number of
fragments.
The horizontal fragmentation schema satisfies the
completeness rule if the selection predicates are
complete. Furthermore, if a horizontal fragmentation
schema is complete, the reconstruction rule is
satisfied by a union operation over all the fragments:

∀Rj ∈ {R1, R2, …, Rm} : R = ∪ Rj (4)

Finally, disjointness is ensured when the selection
predicates defining the fragments are mutually
exclusive [1, 9].
Derived horizontal fragmentation occurs when a
member relation inherits the horizontal
fragmentation of its owner. If the completeness and
disjointness rules are satisfied for the owner
fragments, they are intrinsically satisfied for the
child fragments. The global relation can be
reconstructed by the application of the union
operator, as for primary horizontal fragmentation
[10].

2.1.1 Mixed Fragmentation
A hybrid fragmentation schema is a combination of
horizontal and vertical fragments. If the correctness
and disjointness rules are satisfied for the
comprising fragments, they are implicitly satisfied
for the entire hybrid schema. Reconstruction is
achieved by applying the reconstruction operators in
reverse order of fragment definition. That is, if a
global relation underwent horizontal followed by
vertical fragmentation, the reconstruction would
consist of a join followed by a union [10, 9].

2.2 Replication
Reliability and performance are the two major
purposes of data replication.
 Data replication allows availability, especially for
distributed databases, but it also implies a big
problem to keep consistency.
 Replication of data can be complete or partial.
Complete replication means that the information
need to be replicated at any computer into the
system, other side, partial replication only use a few
computers to replicate the information. In this paper
we use partial replication into the application
developed.

3 Problem Solution
In order to give a solution to CFE, we developed an
application that use horizontal fragmentation with
partial replication. The figure 1 shows the structure
used for replication in the system developed.
Obviously, this solution is punctual, that means that
is built for a special database schema. However, the
algorithm used for distribution and also to keep
consistency can be applied to others applications.

Figure 1. Structure of replication schema.

Empty
Slave

database

Set of records
replicated on slave

database #1

Set of records
replicated on slave

database #3

 The algorithm verifies each query and keep a
counter to know the place and frequency of user
access, if the system detects an access pattern, then
it copy a set of records into a slave database. This
approach allows improve the performance of queries
around database.
 Although this solution seems very simple, works
fine with the requirements.
 It is necessary that every computer having a slave
database execute the next algorithm:

RBy2(bound) Algorithm

1. For each query request, a slave computer

increments a counter (ctr) for the user that have
made the request.

2. If ctr reach bound number (parameter of this

algorithm), then this computer is a candidate to
have a set of records replicated and need to
follow steps 3 and 4, else step 5.

3. Request the set of records that the user is

asking for and save this information into
the slave database.

4. Reset the user local counter to cero.

5. end.

In order to keep consistency into the distributed
database it is necessary that both master and slave
computers have the same information, but in this
case, since the user will access their own
information from the slave computer, it is not
necessary to copy the information immediately, but
later. This schema of information management
allows database availability even when the
connection between slave and master database is
broken.

Figure 2. Sense of local database.

 An algorithm SMS has been designed to provide
access to local database before sending the query to
the master computer, this algorithm test for the
information in the slave database (figure 2), if the
records are founded the information is given to the
user, otherwise the query is sent to the master
database as shown in figure 3.

Figure 3. Sending query to master database.

 In this case, all the information can be founded at
master database, but the system can detect when a
user has an access pattern and it copies the
information needed to a slave computer (partial
replication), so that the user have their information
nearest, diminishing the search time.
 For the application developed, we used
communication with sockets using client-server
model with Java language (figure 5).
 We designed a basic database schema that is used
to manage all the information about users of the
company (CFE), this schema is shown at figure 4.

Figure 4. Database schema used for the application.

 Of course, the schema shown at figure 4 is only a
subschema of real, since the real one have around 50
fields only for user’s table.
 All probes was made under a local network;
however, the real application should be executed

Master
Slave

using dial-up connection, therefore, it is very
important to have experimental results under this
kind of connection. We hope to have those results
by march 2002, but just know results data are only
for a local computer network.

Figure 5. Communication with sockets using TCP/IP

protocol.

4 Conclusion
We have presented an algorithm for a punctual
solution of CFE. This algorithm can move
information between databases, replicating part of
data into slaves databases.
The algorithm is based on two techniques: Slave-
Master Search, to provide fast access to database on
user queries and replication slave-master (two
computers) to get availability.
We tested the algorithm in a laboratory of databases
with 16 computers, and it seems to be a solution for
the problem established by the enterprise, since the
results obtained in a local computer network have a
good behavior.
Next step would be check how the algorithm works
under dial-up connection.

References:
[1] Ozsu M.T., Valduriez P., Principles of

Distributed Database Systems, Prentice-Hall
PTR, 1999.

[2] Sacca D., Wiederhold G., Database partitioning
in a cluster of processors, ACM Transactions on
Database Systems, Vol.10, No.1, 1985, pp. 29-
56.

[3] Apers P.M.G., Data Allocation in distributed
database systems, ACM Transactions on
Database Systems, Vol.13, No.3, pp. 263-304,
1988.

[4] Shepherd J.A., Harangsri B., Chen H.L, Ngu
A.H.H., A Two-Phase Approach to Data
Allocation in Distributed Databases, Fourth
International Conference on Database Systems
for Advanced Applications, World Scientific
Press, Singapur, Singapur Abril 1995, 1996.

[5] Navathe S.B., Karlapalem K., Minyoung Ra., A
Mixed Fragmentation Methodology for Initial
Distributed Database Design, 1997.

[6] Muthuraj J., Chakravarthy S., Varadarajan R.,
Navathe S.B., A Formal Approach to the
Vertical Partioning Problem in Distributed
Database Design. PDIS, 1993.

[7] Karlapalem K., Ng Moon Pun, Query-Driven
Data Allocation Algorithms for Distributed
Database Systems, DEXA 1997.

[8] Brunstrom A., Leutenegger S.T., Simha R.,
Experimental Evaluation of Dynamic Data
Allocation Strategies in a Distributed Database
With Changing Workloads, Fourth International
Conference on Information and Knowledge
Management, November 1995.

[9] Elmasri R., Navathe S., Fundamentals of
Database Systems, Benjamin/Cummings, 1994.

[10] Ceri S., Pelagatti G., Distributed Databases:
Principles and Systems, McGraw-Hill, 1983.

Server

Cliente 1 Cliente 2

ServerSocket

(#puerto)
accept()

InputStream
OutputStream

Close()

Socket

(Host,#puerto)

OuputStream
InputStream

JDBC

BD

Socket

(Host,#puerto)

OuputStream
InputStream

