
The Knowledge plane interface

CHRISTIAN SIFAQUI
Department E-Business & Information Visualization

Zentrum für Graphische Datenverarbeitung e.V.
64283 Rundeturmstraße 6, Darmstadt

GERMANY

Abstract: - A new approach to human-computer interaction and user interfaces based on the concepts of simple and
composite unities, is described. A simple unity can be seen as an attribute-based object. The prototype described here
uses a three-dimensional graphical workspace for working with the knowledge planes. A k-plane is a set of
semantically grouped unities and constraints on them. K-planes exhibit a comprehensible interface for both stand-alone
and cooperative work.

Key-Words: - User interface, Human computer interaction, Autopoiesis theory, Attribute/value systems

1 Introduction
In a very general view, working with computers implies
working with documents. A document will be defined a
sequence of bytes that can be distinguished as a logical
unit at some moment of time (for a more comprehensive
definition of what a document can be, see [1]).
Documents are edited, programmed, searched [2], filed,
executed, sent to other people, revised and use as support
for conversations [3], to name some forms of use.

On the other hand, performing a non-computationally
task still leaves either physical or digital traces such as
memos, contracts, reports, invoices, and so on.
Afterwards, these documents are computationally reated
and managed.

Computers confront us with a program-document
interaction, where programs use document, for example,
a text editor edits and stores textual documents. A
program also lies on the file system as a special type of
document until it is found by the user and then executed.
In fact, both program and document are instances of
files.

From the user point of view, in [2, 4, 5] different
ways used by users to search for and find files on a
personal computer are analized. In these articles the use
of a concept like hierarchical files systems (hfs), that is
not human based but machine based, is criticized, and it
is shown also that all the user activity tries to avoid using
hfs.

In summary, the problem lies on the semantical
separation between program and document, and on the
problems arisen from this gap, for example, the form of
organizing them. In order to deal with this gap issue, a
new conceptual framework is necessary, that allows to
unify these concepts by bringing us a simple but
effective approach.

In this paper an user interface that allows browsing,
navigating and manipulating enhanced documents (later
on called "unities") is presented. This interface is named

Knowledge Plane (k-plane) and allows us to combine in
it semantically similar unities.

The organization of the paper is as follows: section 2
is concerned with providing the approach that guides this
new framework, section 3 presents the design and
implementation of this framework and the interface, and
some examples of the use of this interface are presented
in section 4.

2 Approach
The von Neumann machine is a good example of how
the idea about memory, originally used only for data
storing and transformation, enabled us also to store the
instructions on it. In the same way the object-oriented
programming allowed us to combine in a concept –the
object– data and functions that were two separated
notions in the structured programming. Nowadays
programs and documents are considered separated
entities. For example, if I find a document in .doc format
then I need a program that can process it. In this case the
document's extension determines the allowed use on it
(generally).

In [6, 7] a framework based on the ideas derived
from the autopoiesis theory [8] is presented, where the
concepts of unity, observer, organization and structure
are fundamental to structure information with meta-
information. This new framework deal indeed with
joining semantically the document-program concept.

According to the autopoiesis theory, there are some
definitions that I will use in this paper:

• Observer: "living system who can make distinctions

and specify that which he or she distinguishes as a
unity, as an entity different from himself or herself that
can be used for manipulations or descriptions in
interactions with other observers" [9].

• Simple unity "is a unity brought forth in an

operation of distinction that constitutes it as a whole by
specifying its properties as a collection of dimensions
of interactions in the medium in which it is
distinguished" [10].

• Composite unity "is a unity distinguished as a
simple unity that through further operations of
distinction is decomposed by the observer into
components that through their composition would
constitute the original simple unity in the domain in
which it is distinguished" [10].

• A composite unity has both organization and
structure. "Organization denotes those relations that
must exist among the components of a system for it to
be member of specific class. Structure denotes the
components and relations that actually constitute a
particular unity and make its organization real"[8].

• Property "is a characteristic of a unity specified and
defined by an operation of distinction. Pointing to a
property, therefore, always implies an observer" [9].

Those previous definitions can be formally defined

as:
a simple unity is constituted by an organization O

and a structure S , so that

(1)),(: SOUS =

Likewise a composite unity also has its own

organization and its own structure, in addition to the
simple unities that it can contain, CO is the organization
and CS the structure of the composite unity.

(2)),(:
1

CC

n

i
iSC SOUU ⊕=

=
U

The organization of a simple unity has a set of

attributes SA that define it, so

(3) SS AUO =:)(

Similarly, the organization of a composite unity is

constituted of the organization of the simple unities that
compose it, its own set of attributes CA and the
constraints CC that affect the organization of the
simples unities and itself

(4)),()(:)(
1

CC

n

i
iSC CAUOUO ⊕=

=
U

The structure of a simple unity is the set of values SV

of the attributes SA at the time t , that is

(5) t

SS VUS)(:)(=

In the same way, the structure of a composite unity is

the set of values CV of the attributes SA and the
constraints CC at the time t ,

(6) t
CC

n

i
iSC CVUSUS),()(:)(

1

⊕=
=
U

Fig.1 shows the structures defined previously in a

graphic form. The unities that the observer can
distinguish do not correspond necessarily 1:1 with the
unities that reside in the model.

Fig.1: Unities, k-planes and the observed unities

Fig.2 shows an example that clarifies the previous
structures. On the repository there are 3 simple unities,
"seat", "back" and "leg", one observer with those unities
has only defined the composite unity "chair", whereas
the other observer defines two dependent composite
unities, "stool" and this is part of "chair".

Fig.2: Simple and composed unities and the observed
unities

3 Design and Implementation
The architecture of the system is shown at Fig.3.

Fig.3: Architecture

This architecture is divided in three layers, the inner

layer is a repository of simple unities. Following
equations (1), (3) and (5) a simple unity can be realized
through a list of attributes. A possible implementation
would be to model a document through a file to which a
list of attributes are added up as described in [11].
Another possibility would be a list of attributes where
the content of the document is stored itself as an
attribute, as proposed in [12].

The next layer stores the composite unities.
Following equations (2), (4) and (6) a composite unity is
the composition of simple unities adding up the
constraints that make these units belong to the composite
unity. The constraints are logical operators on attributes
or functions that are executed on particular attributes.

The last layer deals with the interaction which is seen
as interaction between observer and unities but also
interaction between observers (for a more detailed
discussion about interaction between observers see [7]).

The architecture allows the local gathering of unities
to be distinguished by each observer and also a
distributed access of shared unities.

I choose harland [13] as support for attributes and
Java for the implementation of the prototype. Java offers
the possibility of new classes being added up to the
system while as it runs, through the adequate use of
Class.forName().newInstance(). This is an essential issue
to allow users to generate new composite unities through
additional constraints. The new class must implements
the Kplane interface.

Fig.4 shows a screenshot of the prototype, where the
mostly used frames are shown. On the right side it is
possible to see the k-planes interface and on the left side
the interaction between observers.

Fig.4: Snapshot of the protoype

On Fig.4A the visualization of the k-planes is shown.

Fig.4D shows a list with the connected observers. Fig.4C
shows the activity of them. The implementation supports
direct manipulation, so communicating k-planes among
observers is done by dragging and dropping them from a
frame to another. Arrow 1 (from 4A to 4B) or arrow 2
(from 4A to 4F) shows how a unity can be transmitted.
Here is a fundamental difference on the sharing, arrow 1
uses a unity as a basis for conversation whereas arrow 2
sends an attached unity as a part of the conversation.

3.1 K-Planes
K-planes are a 3D graphical representation of the

composite unities. As previously noted, the k-planes (or
composite unities) relate simple unities to each other and
have constraints added. Thus, an observer can create a k-
plane as a container of simple unities, with no
constraints sharing common attributes. Many complex k-
planes can have special constraints with regard to the
organization of the unities, for example, according to a
particular value of the structure of the unity some actions
can be carried out.

K-planes are created on-the-fly when some search
operation is carried out, looking at all the unities that
have been modified in the last two days, for example.
Then, a new k-plane containing the found unities is
created.

The observers can define and program (in Java) their
own k-planes and they can also be added to those
already used by a client. K-planes can also be shared
among observers.

A draft visualization of this representation is given in
Fig.5, where the simple unities are represented by nodes
on each k-plane. The navegation is carried out through
movements in the hyperbolic space in a style similar to
the proposed in [14]. In addition each k-plane can be
rotated in its axis which allows a easy access to the
unities that it stores.

Fig.5: Knowledge planes.

4 Examples
Two examples have been chosen to show the use of k-
planes that do different actions based on the attributes of
the simple unities.

4.1 Use of the k-planes for e-mail
Nowadays, it is almost impossible to conceive using k-
planes without having electronic mail facilities, since
most of the tasks and information that daily arrives to us
originates from it. In Fig.6 two k-planes are shown, the
nearest shows all the unread incoming mail and the
behind one contains all the mails. The first k-plane
connects with a IMAP server and for each mail a unity is
created and added to this k-plane. This initial
configuration can be extended by the observer later,
creating more k-planes that "filter" the unities according
to the values of the structure of each unity.

Fig.6: A k-plane showing the inbox mail with a spiral
visualization of the incoming mails and a frame showing
the structure of the selected unity.

The organization of these unities is composed of the
attributes from, subject, content, status, sentDate,
receivedDate, size and so on. When the structure of a
unity has the attribute status with the value recent, then
this unity is shown in the first k-plane. Once the observer
reads the unity, the status changes to another value
(possible values are seen, answered, deleted among

others) and "disappears" from the first k-plane and
"goes" to the k-plane of the mails.

In this last k-plane other search or refinements
operations can be carried out or new k-planes can be
created from this, for example, a k-plane can have the
constraint that the attribute from must have a specific
value and that the date must be ordered in ascending
way, as shown in Fig.7.

Fig.7: A K-plane showing a k-plane created from the
email k-plane.

4.2 Use of the system as workflow
The k-planes can also be used to implement workflows.
A workflow allows us to automate work steps, during
which documents, information or tasks are passed from
one participant to another for action, according to a set
of procedural rules.

This workflow has been designed to support a
process of internal review of articles. In order to improve
the quality of papers, the authors use a review system
where the paper is sent to a anoymous reviewer
according to the areas of knowledge of this reviewer. In
order to determine who should revise the paper, it is
necessary that each unity (paper) has the key words as
attributes in its organization.

For this workflow each observer has two k-planes,
one for exit and another one for entrance. In the first one
the articles are placed for their review. In the other k-
plane articles from others authors arrive due to the key
words corresponding to the area of knowledge of the
observer.

Fig.8 shows the k-plane for a person who is waiting
for the result of the reviewing process. In this plane, two
unities are not been evaluated and the another unity is
waiting for the author to read the comments.

Fig.8: A K-plane showing a workflow

5 Conclusions
In this article a new framework for interacting with
computers and an appropriate user interface is presented.
As theoretical basis is used the autopoiesis theory. This
theory provides the concepts for the new framework and
a new human-computer interaction approach based on
concepts from this theory is modelled.

The usual document-program interaction style is
replaced with a observer-unity interaction, so to enable a
more effective way of interacting and working.

K-planes show a new way of information structuring
and visualization. In the case of k-planes for mail they
act as filters of a mail server that stores the information
in a hfs-like system, with the use of k-planes the hfs data
model becomes non-relevant to the user.

In addition, a unity organization allows us to model
workflows and therefore to work with k-planes so
reducing the mental overhead.

In summary, k-planes exhibit a well-defined interface
for stand-alone and cooperative work.

References:
[1] M. K. Buckland, What is a "document"?, Journal of

the American Society of Information Science, Vol.
48, No. 9, 1997, pp. 804-809.

[2] D. Barreau and B. Nardi, Finding and Reminding:
File Organization from the Desktop, in SIGCHI
Bulletin, vol. 27, 1995, pp. 39-43.

[3] S. Whittaker, D. Frohlich, and O. Daly-Jones,
Informal Workplace Communication: What is it like
and how might we support it?, in Proceedings of
CHI'94 Conference on Computer Human Interaction,
Boston, USA, 1994.

[4] E. Freeman and S. Fertig, Lifestreams: Organizing
your Electronic Life, in AAAI Fall Symposium: AI
Applications in Knowledge Navigation and
Retrieval, Cambridge, Mass., 1995.

[5] B. Nardi and D. Barreau, "Finding and Reminding"
Revisited: Appropiate Metaphors for File

Organization at the Desktop, in SIGCHI Bulletin,
vol. 29, 1997.

[6] C. Sifaqui, The ICS model: simultaneous support to
stand-alone and cooperative work, in 1st
International Conference on Universal Access in
Human-Computer Interaction, New Orleans, LA,
2001.

[7] C. Sifaqui, A process- and product-centered approach
to Knowledge Management, in Applied Informatics
(AI 2002), Inssbruck, Austria, 2002 to be published.

[8] H. Maturana and F. Varela, The Tree of Knowledge:
The Biological Roots of Human Understanding,
Revised Edition ed. Boston, Shambhala Publications,
Inc., 1998.

[9] H. Maturana, Biology of Language: The
Epistemology of Reality, in Psychology and Biology
of Language and Thought: Essays in Honor of Eric
Lenneberg, G. A. Miller and E. Lenneberg, Eds. New
York: Academic Press, 1978, pp. 27-63.

[10] H. Maturana, Ontology of Observing: The
Biological Foundations of Self Consciousness and
the Physical Domain of Existence, in Conference
Workbook: Texts in Cybernetics, American Society
for Cybernetics Conference, Felton, CA, 1988.

[11] P. Dourish, W. Edwards, A. LaMarca, and M.
Salisbury, Presto: an experimental model for fluid
interactive document spaces, ACM Transactions on
Computer-Human Interaction, Vol. 6, No. 2, 1999,
pp. 95-132.

[12] T. Jones, Attribute Value Systems: an Overview,
1998.ftp://jones.tc/pub/hotos.ps.gz.

[13] Xerox, Harland (har23). Palo Alto, CA,
2000.http://www.parc.xerox.com/harland.

[14] T. Munzer, Visualizing the Structure of the
World Wide Web in 3D Hyperbolic Space, in
Proceedings of the First Annual Symposium on the
VRML Modeling Language, San Diego, CA, 1995.

